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“gain, we refer to Eaton (1992) for extensions, examples, and comments on this
s=sui_ Note, however, that the verification of the recurrence of the Markoy chain
¥ | s much easier than the determination of the lower bound of A(h). Hobert
s Hobert (1999) consider the potential of using the dual chain based on the kernel

1) o) = /9 F(l8)n(6]z)db

~s== Problem 6.64) and derive admissibility results for various distributions of inter-
L__ &

£.9.3 Alternative Convergence Conditions

Aihreva et al. (1996) present a careful development of the basic limit theorems for
Markov chains, with conditions stated that are somewhat more accessible in Markov
“=ain Monte Carlo uses, rather than formal probabilistic properties.

Cemsider a time-homogeneous Markov chain (Xn) where f is the invariant density
222 fi(-|-) is the conditional density of Xy given Xo. So, in particular, fi(:|-) is the
“rznsition kernel. For a basic limit theorem such as Theorem 6.51, there are two
“omditions that are required on the transition kernel, both of which have to do with

&= ability of the Markov chain to visit all sets A. Assume that the transition kernel
satisfies®: There exists a set A such that

W 3 [ fr(zlzo) du(z) > 0 for all To,
i8) infz yca fi(ylz) > 0.

A set A satisfying (i) is called accessible, which means that from anywhere in the
siate space there is positive probability of eventually entering A. Condition (i) is
=ssentially a minorization condition. The larger the set A, the easier it is to verify
2 and the harder it is to verify (ii) . These two conditions imply that the chain is
@reducible and aperiodic. It is possible to weaken (ii) to a condition that involves
F& for some k > 1; see Athreya et al. (1996).

The limit theorem of Athreya et al. (1996) can be stated as follows.

Theorem 6.80. Suppose that the Markov chain (Xn) has invariant density f(:) and
fransition kernel f1(-|-) that satisfies Conditions (i) and (ii). Then

(6.49) © lim sup /fk(zl:co)dx—/f(x)dz
A A

=0
k—oo 4

Jfor [ almost all z.

6.9.4 Mixing Conditions and Central Limit Theorems

In Section 6.7.2, we established a Central Limit Theorem using regeneration, which
allowed us to use a typical independence argument. Other conditions, known as miz-
ing conditions, can also result in a Central Limit Theorem. These mixing conditions
suarantee that the dependence in the Markov chain decreases fast enough, and vari-
ables that are far enough apart are close to being independent. Unfortunately, these

conditions are usually quite difficult to verify. Consider the property of a-mizing
(Billingsley 1995, Section 27):

® The conditions stated here are weaker than those given in the first edition; we
thank Hani Doss for showing us this improvement.
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6.9.2 Eaton’s Admissibility Condition

Eaton (1992) exhibits interesting connections, similar to Brown (1971), between the
admissibility of an estimator and the recurrence of an associated Markov chain. The
problem considered by Eaton (1992) is to determine whether, for a bounded function
g(0), a generalized Bayes estimator associated with a prior measure 7 is admissible
under quadratic loss. Assuming that the posterior distribution 7(6|x) is well defined,
he introduces the transition kernel

(6.46) K(6,7) = /X 7(6]2) f (zln) dz,

which is associated with a Markov chain (§(™) generated as follows: The transition
from 8™ to #™*+1 is done by generating first z ~ f(z|0™) and then oty ~
7(8|z). (Most interestingly, this is also a kernel used by Markov Chain Monte Carlo
methods, as shown in Chapter 9.) Note that the prior measure 7 is an invariant
measure for the chain (™). For every measurable set C' such that 7(C) < +o0,
consider

V(C) = {h € L*(x); h(8) > 0 and h(§) > 1 when 6 € C}
and

am = [ [ 166 - hwy: K@.ny(n) b an

The following result then characterizes admissibility for all bounded functions in
terms of A and V(C) (that is, independently of the estimated functions g).

Theorem 6.78. If for every C such that ©(C) < +00,

(6.47) hel{/l{c) A(h) =0,
then the Bayes estimator E™[g(0)|z] is admissible under quadratic loss for every
bounded function g.

This result is obviously quite general but only mildly helpful in the sense that
the practical verification of (6.47) for every set C' can be overwhelming. Note also
that (6.47) always holds when 7 is a proper prior distribution since h = 1 belongs
to £2(r) and A(1) = 0 in this case. The extension then considers approximations of
1 by functions in V(C). Eaton (1992) exhibits a connection with the Markov chain
(™), which gives a condition equivalent to Theorem 6.78. First, for a given set C,
a stopping rule 7¢ is defined as the first integer n > 0 such that (6‘™) belongs to C
(and +o0 otherwise), as in Definition 6.10.

Theorem 6.79. For every set C such that m(C) < 400,

dpf Aw) = [ {1=Plro < +o0lp® =)} x(a) dn

Therefore, the generalized Bayes estimators of bounded functions of 6 are admissible
if and only if the associated Markov chain (6'™) is recurrent.
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AV(z) < —(1-16]) V() + E[les]] + 1 — o)
=== 10) YV (2) +Elles|] + 1 - |g] — (1 — 71— |8)) V(=)
< =BV (z) + blo(z)

e S=(1-0)v, b=E[ei[] +1— 6], and C equal to
C={=: V(2) < Elleal] + 1 - J6]) /(1 - )(1 - 1N}

® ¥ < 1 and Ele1]] < +00. These conditions thus imply geometric ergodicity for
ARI1) models. I

Meyn and Tweedie (1994) propose, in addition, ezplicit evaluations of conver-
R in connection with drift co

See V' satisfying (6.42), which makes the result somewhat artificial.
There also is an equivalent form of uniform e

"8at (X)) is aperiodic a; i :

% > 1. and constants 0 < b < o0 and 8 > 0 such that

5.4y) AV (z) < -pV(z) + blc(z), TEX.

= 2 practical case (see, e.g., Example 12.6), this alternative to the conditions of
Theorem 6.59 is often the most natural approach.

As mentioned after Theorem 6.64, there exist alternative versions of the Central
Limit Theorem based on drift conditions. Assume that there exist a function =1
= Snite potential function V, and a small set C' such that

16.45) AV(z) < —f(z) +blc(z), TE X

and that E"[V?] < oo. This is exactly condition (6.44) above, with f =V, which
smplies that (6.45) holds for an uniformly ergodic chain.

Theorem 6.77. If the ergodic chain (X,) with invariant distribution 7 satisfies
conditions (6.45), for every function g such that lg| < £, then

7 = lim nE.[S2(7)]

= Ex[7*(@0)] + 2 Y Ex[5(z0)g(ax)]

is non-negative and finite. If v¢ > 0, the Central Limit Theorem holds for S, (9). If
72 =0, VnS,(9) almost surely goes to (.

This theorem is definitely relevant for convergence assessment of Markov chain
Monte Carlo algorithms since, when 42 > 0, it is possible to assess the convergence
of the ergodic averages S, (9) to the quantity of interest E"[g]. Theorem 6.77 also
suggests how to implement this monitoring through renewal theory, as discussed in
detail in Chapter 12.
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(b) there ezist a small set C and a positive number Mc such that

sup Ez[rc] < Mc ;
zeC

(c) there exist a small set C, a function V' taking values in RU {0}, and a positive
real number b such that

(6.40) AV (z) < =1+ blc(z) .

See Meyn and Tweedie (1993, Chapter 11) for a proof and discussion of these
equivalences. (If there exists V' finite and bounded on C which satisfies (6.40), the
chain (X») is necessarily Harris positive.)

The notion of a Kendall atom introduced in Section 6.6.2 can also be extended
to non-atomic chains by defining Kendall sets as sets A such that

TA—1
(6.41) ' sup E. [Z Kk:l 2350,

z€A k=0

with & > 1. The existence of a Kendall set guarantees a geometric drift condition.
If C is a Kendall set and if
V(z) = Es[x"¢],

the function V satisfies
(6.42) AV (z) £ =BV (z) + blc(x)

with 8 > 0 and 0 < b < oco. This condition also guarantees geometric convergence
for (X») in the following way.

Theorem 6.75. For a v-irreducible and aperiodic chain (X») and a small Kendall
set C, there ezist R< oo andr >1,k>1 such that

(6.43) i K™ (z,-) — 7(-)| < RE: [i n"] < 00

n=1 k=0

for almost every x € X.

The three conditions (6.41), (6.42) and (6.43) are, in fact, equivalent for -
irreducible aperiodic chains if A is a small set in (6.41) and if V' is bounded from
below by 1 in (6.42) (see Meyn and Tweedie 1993, pp. 354-355). The drift condi-
tion (6.42) is certainly the simplest to check in practice, even though the potential
function V must be derived.

Example 6.76. (Continuation of Example 6.20) The condition 0] < 1is
necessary for the chain X = 0zn—1 + €n to be recurrent. Assume &, has a strictly
positive density on R. Define V(z) = |z| + 1. Then

E.[V(X1)] = 1 +E[|6X +&1]]
< 1+ 6] || + Eflea]]
= 16| V(z) + E[lex]] +1 - 16|
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Froof If C = {z;V(z) < r} and M is a bound on V, the conditions (6.38) are
satisfied by

ifzecC.

Since V(z) < 1for z € C¢ V*(z) = Po(rc < o0) < 1 on C®, and this implies the
“rznsience of C, therefore the transience of (Xn). The converse can be deduced from
= |partial) converse to Proposition 6.31 (see Meyn and Tweedie 1993, p. 190). O

7(2) = { (M -Vt 1) ifacCo

Condition (6.39) describes an average increase of V/(z) once a certain level has
Seen attained, and therefore does not allow a sure return to 0 of V. The condition is
“hus incompatible with the stability associated with recurrence. On the other hand,
= there exists a potential function V “attracted” to 0, the chain is recurrent.

Theorem 6.72. Consider (X,,) a y-irreducible Markoy chain. If there exist a small
s=t C and a function V such that

Cv(n) = {z;V(z) < n}
s a small set for every n, the chain is recurrent if
AV (z) <0 on C°.

The fact that Cyv (n) is small means that the function V is not bounded outside
small sets. The attraction of the chain toward smaller values of V' on the sets where
" is large is thus a guarantee of stability for the chain. The proof of the above result
. again, quite involved, based on the fact that Pr(Tc < 00) = 1 (see Meyn and
Tweedie 1993, p. 191).

Example 6.73. (Continuation of Example 6.39) If the distribution of W,, has a
Snite support and zero expectation, (Xn) is recurrent. When considering V (z) = |z
and r such that v, = 0 for |z| > r, we get

r

AV(z)= 3" yallz+n|—|af),

n=-—r

which is equal to

Z'ynn if z>r and —Z'y,,n if < —p.

n=-—r n=-—r

Therefore, AV (x) =0 for z ¢ {=r+1,...,r — 1}, which is a small set. Conversely,
if Wy has a nonzero mean, X, is transient. Il

For Harris recurrent chains, positivity can also be related to a drift condition
and to a “regularity” condition on visits to small sets.

Theorem 6.74. If (X,,) is Harris recurrent with invariant measure , there is equiv-
alence between

(a) 7 is finite;
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(a) Show that

var[E(Xx|Xo)] = E[E(Xk| Xo)I,
var[E(Xx|Xo)] > var(E(Xe+1]Xo)]] -
(Hint: Write fr+1(ylz) = [ fr(ylz) f(«'|x)dz" and use Fubini and Jensen.)

(b) Show that
E[vaI(XkIXo)] = IE[VaI(Xk+1|X0)]

and that
lim E[var(Xx|Xo)] = o
k—oo

6.9 Notes

6.9.1 Drift Conditions

Besides atoms and small sets, Meyn and Tweedie (1993) rely on another tool to check
or establish various stability results, namely, drift criteria, which can be traced back
to Lyapunov. Given a function V' on X, the drift of V is defined by

AV(z) = / V(y) P(z,dy) — V(z) -

(Functions V appearing in this setting are often referred to as potentials; see Norris
1997.) This notion is also used in the following chapters to verify the convergence
properties of some MCMC algorithms (see, e.g., Theorem 7.15 or Mengersen and
Tweedie 1996).

The following lemma is instrumental in deriving drift conditions for the tran-
sience or the recurrence of a chain (Xx).

Lemma 6.70. If C € B(X), the smallest positive function which satisfies the con-
ditions
(6.38) AV(z)<0 if z¢C, V(®)=21 i z€ C
is given by
V*(z) = Pe(oc < ) ,
where oc denotes

oc = inf{n > 0;zn € C} .

Note that, if z ¢ C, oc = 7c, while cc =0 on C. We then have the following
necessary and sufficient condition.

Theorem 6.71. The v-irreducible chain (X») is transient if and only if there exist
a bounded positive function V and a real number r > 0 such that for every x for
which V(z) > r, we have

(6.39) AV(z)>0.
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6.61 (Kemeny and Snell 1960) Show that for an aperiodic irreducible Markov chain
with finite state-space and with transition matrix P, there always exists a sta-
tionary probability distribution which satisfies

T = 7wP.

(a) Show that if 8 < 0, the random walk is recurrent. (Hint: Use the drift
function V'(z) = z as in Theorem 6.71.)

(b) Show that if 3 = 0 and var(e,) < oo, (Xn) is recurrent. (Hint: Use V(z) =
log(1 + z) for > R and V/(z) = 0, otherwise, for an adequate bound R.)

(c) Show that if 8 > 0, the random walk is transient.

6.62 Show that if there exist a finite potential function V and a small set C such
that V' is bounded on C and satisfies (6.40), the corresponding chain is Harris
positive.

6.63 Show that the random walk on Z is transient when E[W,] # 0.

6.64 Show that the chains defined by the kernels (6.46) and (6.48) are either both
recurrent or both transient.

6.65 Referring to Example 6.66, show that the AR(1) chain is reversible.

6.66 We saw in Section 6.6.2 that a stationary Markov chain is geometrically ergodic
if there is a non-negative real-valued function M and a constant < 1 such that
for any A € X,

|P(Xn € A|Xo € B) — P(Xn € A)| < M(z)r".

Prove that the following Central Limit Theorem (due to Chan and Geyer 1994)
can be considered a corollary to Theorem 6.82 (see Note 6.9.4):

Corollary 6.69. Suppose that the stationary Markov chain Xo, X1, Xo,... i
geometrically ergodic with M™ = [ |M(z)|f(z)dz < oo and satisfies the moment
conditions of Theorem 6.82. Then

0® = lim nvarX, < oo

n—oo

and if 0> > 0, \/nXn /o tends in law to N(0,02).

(Hint: Integrate (with respect to f) both sides of the definition of geometric
ergodicity to conclude that the chain has exponentially fast a-mixing, and apply
Theorem 6.82.)
6.67 Suppose that Xo,X1,..., X, have a common mean ¢ and variance 2 and
that cov(X;, X;) = p;_;. For estimating £, show that
(a) X may not be consistent if pj—i = p # 0 for all i # j. (Hint: Note that
var(X) > 0 for all sufficiently large n requires p > 0 and determine the
distribution of X in the multivariate normal case.)
(b) X is consistent if [p;_i| < M~ with |yl < 1.
6.68 For the situation of Example 6.84:
(a) Prove that the sequence (X,) is stationary provided o? = 1/(1 — 82).
(b) Show that E(Xx|zo) = B*zo. (Hint: Consider E[(Xk — BXk-1)|z0).)
(c) Show that cov(Xo, Xi) = 8*/(1 — 52).
6.69 Under the conditions of Theorem 6.85, it follows that E[E(Xx|Xo)]? — 0.
There are some other interesting properties of this sequence.
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6.55 (Continuation of Problem 6.54) Show that an ergodic random walk on a finite

state-space is reversible.
6.56 (Kemeny and Snell 1960) A Markov chain (X,) is lumpable with respect to a

nontrivial partition of the state-space, (A1,...,Ax), if, for every initial distri-

bution u, the process
k

Zn=")_ ila,(Xn)

=1
is a Markov chain with transition probabilities independent of p.
(a) Show that a necessary and sufficient condition for lumpability is that

PuA; = Z Puv

vEA;

is constant (in n) on A; for every .
(b) Examine whether

1540~ < 000700
Gasiea0:c 0.0
P=|050 0050
0 0050 05
0 050050

is lumpable for Ay = {1,2}, A2 = {3,4}, and A3z = {5}.
6.57 Consider the random walk on R, Xnt1 = (Xn +€)*, with Elen] = B
(a) Establish Lemma 6.70. (Hint: Consider an alternative V to V* and show
by recurrence that

Ve > [ K@V + / K(z,y)V(5)dy
C Cce
> Wy > V' (2) )

(b) Establish Theorem 6.72 by assuming that there exists z* such that P+ (7c
< o0) < 1, choosing M such that M > V(z*)/[1 = Pe=(tc < o0)] and
establishing that V(z*) > M[1 — P+ (Te < o0)].

6.58 Show that

(a) a time-homogeneous Markov chain
tion is the invariant distribution;

(b) the invariant distribution of a stationary Mar

distribution of any Xo.
6.59 Referring to Section 6.7.1, let X» be a Markov chain and h(-) a function with

Eh(X,) = 0, Varh(Xn) = o2 > 0, and ER(Xn+1|zn) = h(zn), so k() is a
nonconstant harmonic function.
(a) Show that Eh(Xnt1|zo) = h(zo).
(b) Show that Cov(h(zo), h(Xn)) = a2,
(c) Use (6.52) to establish that Var (%—H Yo h(XE)
ing that the chain is not ergodic.

6.60 Show that if an irreducible Markov chain has a o-

measure is unique up to a multiplicative factor. (Hi

(X,) is stationary if the initial distribu-

kov chain is also the marginal

)—>ooasn——>oo,show-

finite invariant measure, this
nt: Use Theorem 6.63.)
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(a) Show that for every state 4, E;[f;] is finite.

(b) Show that the matrix M with entries mi; = E;:[f;] can be written M =
P(M — My) + E, where My is the diagonal matrix with same diagonal as
M and E is the matrix made of 1’s.

(c) Deduce that mi; = 1/7;.

d) Show that M is the vector of the zi;/m;’s.

= Show that for every pair of initial distributions, (u.»).

Eulfi] = Eu[fs] = (u — v)(I - Z)D.

where D is the diagonal matrix diag(1/7;).
#.58 I£ 4 is a function taking values on a finite state-space {1 r}. with k(i) = h;,
#nd if (X,,) is an irreducible Markov chain, show that

lim %var(i h(:ct)) = E hici;h;,
n—oo
t=1 4

where ¢i; = Tizij + T2 — midij — mim; and di; is Kroenecker’s 01 function.
l-a e

8 1—8) show that
‘2| the stationary distribution is 7 = (3/(a + B),a/(a+ 3)):
‘5 the mean first passage matrix is

_((e+B)/B 1la :
M‘( 1/8 (a+3)/a)'

#.51 For the two-state transition matrix P =

‘¢ and the limiting variance for the number of times in state jsafd(2—a— 38)/(a + 6)3,

ar 9 =1,2.
#.52 Show that a finite state-space chain is always geometrically ersodic.
#.53 Kemeny and Snell 1960) Given a finite state-space Markow chain. with tran-
sition matrix [P, define a second transition matrix by

Pu(Xn-1 = j)P(Xn = i Xn1 =)
pij(n) = - :
A PlXn=7)
2) Show that p;;(n) does not depend on n if the chain i stationary (ie., if
p=r). _
‘B! Explain why, in this case, the chain with transition matrix P made of the
probabilities

pij = 2
i
is called the reverse Markov chain.
'c) Show that the limiting variance C is the same for both chains.
%54 (Continuation of Problem 6.53) A Markov chain is reversibie if = P. Show
that every two-state ergodic chain is reversible and that an ergodic chain with
symmetric transition matrix is reversible. Examine whether the matrix

0 0 1708
050050 0
P=|] 0050 050
0.0:05,0 .05
0101100

i reversible. (Hint: Show that 7 = (0.1,0.2,0.4, 0.2, 0.1).)
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6.44 (Continuation of Problem 6.43) Consider two independent forward recurrence
time processes (V") and (W) with the same generating probability distribu-
tion p.

(a) Give the transition probabilities of the joint process Vi = (ViH, W),

(b) Show that (V) is irreducible when p is aperiodic. (Hint: Consider r and
s such that g.c.d.(r,s) = 1 with p(r) > 0, p(g) > 0, and show that if
nr —ms =1 and i > j, then

Py (Viri—jyne = (1,1)) > 0 2

(c) Show that x* = 7 x m, with 7 defined in Problem 6.43 is invariant and,
therefore, that (V;7) is positive Harris recurrent when mp < 00.

6.45 (Continuation of Problem 6.44) Consider V,; defined in Problem 6.44 associ-
ated with (Sr,Sy) and define 71,1 = min{n; Vo = (1,1)}.
(a) Show that Tpq = 71,1 + 1.
(b) Use (c) in Problem 6.44 to show Lemma 6.49.

6.46 (Kemeny and Snell 1960) Establish (directly) the Law of Large Numbers for a
finite irreducible state-space chain (Xn) and for h(zs) = I;(zn),ifjis a possible
state of the chain; that is,

o B
N Zlﬂj(fn) — Wjs

where 7 = (71, ..,mj,...) is the stationary distribution.

6.47 (Kemeny and Snell 1960) Let P be a regular transition matrix, that is, PA =
AP (see Problem 6.9), with limiting (stationary) matrix A; that is, each column
of A is equal to the stationary distribution.

(a) Show that the so-called fundamental matriz Z = (I — (P — A))™! exists.

(b) Show that Z =1+ Y4

(c) Show that Z satisfies 7 = 7 and PZ = ZP , where m denotes a row of A
(this is the stationary distribution).

6.48 (Continuation of Problem 6.47) Let N;(n) be the number of times the chain
is in state j in the first n instants.

(a) Show that for every initial distribution g,

lim E,[N;(n)] —nms = w(zZ — A).

(Note: This convergence shows the strong stability of a recurrent chain since
each term in the difference goes to infinity.)
(b) Show that for every pair of initial distributions, (4, V),

Tim E,[N; (0)] - Eo[N; ()] = (1 = 1)2-

(c) Deduce that for every pair of states, (u,v),
lim Ey[N;(n)] — Eo[N; (n)] = 2zuj — 2vj>

which is called the divergence div;(u,v).

6.49 (Continuation of Problem 6.47) Let f; denote the number of steps before
entering state j.
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6.8 Problems

§.40 (a) Verify (6.26), namely, that |[pllrv = (1/2) supjp <1 |f h(z)p(dz)).
') Show that (6.26) is compatible with the definition of the total variation
norm. Establish the relation with the alternative definition

||ullrv = sup u(A) — inf u(A).
A

& 41 Show that if (X,) and (X;) are coupled at time No and if Xp ~ =, then
X! ~ m for n > Np for any initial distribution of Xg.
&.42 Using the notation of Section 6.6.1, set

un) = Y9 (n)

with p’* the distribution of the sum Sy +-+-+S;, p°* the Dirac mass at 0, and
Z(n) = Izj;8;=n-

(a) Show that Py(Z(n) =1) =qx u(n).
(b) Show that
lg* u(n) — pru(n)| < 2 P(Tpq > 7).
(This bound is often called Orey’s inequality, from Orey 1971. See Problem
7.10 for a slightly different formulation.)
(c) Show that if m, is finite,
_ 2 p)
e(n) = A dih
is the invariant distribution of the renewal process in the sense that
P.(Z(n) = 1) = 1/m,, for every n.
(d) Deduce from Lemma 6.49 that

lim |g * u(n) — El_‘ =0
Lo P

when the mean renewal time is finite.
& 43 Consider the so-called “forward recurrence time” process V,F, which is a
\Markov chain on N4 with transition probabilities

P(l!j) = p(j)a g2 1
P(j,j—1)=1, j>1)

where p is an arbitrary probability distribution on N. (See Problem 6.12.)

(a) Show that (V") is recurrent.
(b) Show that
PV =) =p(+n—1).

(¢) Deduce that the invariant measure satisfies

(j) =Y _p(n)

n2j
and show it is finite if and only if

mp = an(n) G0
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6.32 Referring to (6.21):
(a) Show that E,[rc] < 003
(b) show that 3=, P(rc > t) = Eu[rc].

6.33 Let I’ = {Z, : n = 0,1,...} be a discrete time homogeneous Markov chaim
with state space Z and Markov transition kernel

(637) A’I(Z, ) = wy(') 55 (1 T w)K(z, ) )

where w € (0,1) and v is a probability measure.
(a) Show that the measure

oo

o) =D wl—-w) KT (1)

i=1

is an invariant probability measure for I'.
(b) Deduce that I" is positive recurrent.
(c) Show that, when & satisfies a minorization condition with C = X, (6.1
holds for all z € X and is thus a mixture of the form (6.37).
(Note: Even if the Markov chain associated with K is badly behaved, e.g., tran-
sient, I’ is still positive recurrent. Breyer and Roberts (2000b) propose anothes
derivation of this result, through the functional identity

/qb(:r)M(:c,z)d:c = m(2) )

6.34 Establish the equality (6.14).

6.35 Consider the simple Markov chain (X»), where each X; takes on the values
—1 and 1 with P(Xi+1 = 1|X¢ — —1) = P(X«H.l — —1|X,; = 1) =1, and
P(Xo=1)=1/2.

(a) Show that this is a stationary Markov chain.
(b) Show that cov(Xo, Xk) does not go to zero.

(¢) The Markov chain is not strictly positive. Verify this by exhibiting a set that
has positive unconditional probability but zero conditional probability.
(Note: The phenomenon seen here is similar to what Seidenfeld and Wasserman

1993 call a dilation.)

6.36 In the setup of Example 6.5, find the stationary distribution associated with
the proposed transition when 7; = 7; and in general.

6.37 Show the decomposition of the “first entrance and last exit” equation (6.23).

6.38 If (a,) is a sequence of real numbers converging to a, and if b, = (a1 + -+ +
a»)/n, then show that

li?xln b ="ta

(Note: The sum (1/n) 7, a;i is called a Cesdro average; see Billingsley 1995,
Section A30.)

6.39 Consider a sequence (a,) of positive numbers which is converging to a” and a
convergent series with running term bn. Show that the convolution

n—1 oo
n—o00

E ajbn_j — a* E bj.

j=1 j=1

(Hint: Use the Dominated Convergence Theorem.)
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6.25 (Continuation of Problem 6.22) A Markov chain that is not positive recurrent
may be either null recurrent or transient. In either of these latter two cases, the
invariant distribution, if it exists, is not a probability distribution (it does not
have a finite integral), and the difference is one of expected return times. For
any integer j, the probability of returning to j in k steps is pﬁ»';) = P(Xisx =
J|1X: = j), and the expected return time is thus my; =302 kpr) g
(a) Show that since the Markov chain is irreducible, m;; = oo either for all J

or for no j; that is, for any two states z and Y, Z is transient if and only if
y is transient.

(b) An irreducible Markov chain is transient if mjj = 00; otherwise it is re-

current. Show that the random walk is positive recurrent if p < 1/2 and
transient if p > 1/2.

(c) Show that the random walk is null recurrent if P = 1/2. This is the interest-

ing case where each state will be visited infinitely often, but the expected
return time is infinite.

6.26 Explain why the resolvant chain is necessarily strongly irreducible.
6.27 Consider a random walk on R, defined as

X = (Xt €)+.

Show that the sets (0, ¢) are small, provided P(e<0) > 0.
6.28 Consider a random walk on Z with transition probabilities

P(Zi=n+1|Zicxy=n)=1-P(Z, =n — 1Zi-1=n) xn™™

and
P(Z:=11Z-1=0)=1-P(Z, = -1|Zs—1 = 0) = 1/2 .
Study the recurrence properties of the chain in terms of a.
6.29 Establish (i) and (ii) of Theorem 6.28.
(a) Use
K"(z,4) > K" (z,0)K*(a, ) K*(a, A)
for r 4+ s+t =mn and r and s such that

K" (z,a) >0 and K*(a, A) >0

to derive from the Chapman-Kolmogorov equations that E;[n4] = co when
a[na] = oo.
(b) To show (ii):
a) Establish that transience is equivalent to Po(ra <i00) <114

b) Deduce that E;[1.] < oo by using a generating function as in the proof
of Proposition 6.31.

¢) Show that the covering of X is made of the

J
o ={y Y K"(y,a)>; '}
n=1
6.30 Referring to Definition 6.32, show that if P(na = 00) # 0 then E, [na] = oo,
but that P(n4 = co) = 0 does not imply Ez[na] < co.
6.31 In connection with Example 6.42, show that the chain is null recurrent when

=1
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The random walk (Examples 6.40 and 6.39) is a useful probability model and has
been given many colorful interpretations. (A popular one is the description of an
inebriated individual whose progress along a street is composed of independent
steps in random directions, and a question of interest is to describe where the
individual will end up.) Here, we look at a simple version to illustrate a number
of the Markov chain concepts.

6.22 A random walk on the non-negative integers I = {0,1,2,...} can be con-
structed in the following way. For 0 < p < 1, let Yp,Y3,... be iid random
variables with P(Y; = 1) = p and P(Y; = -1) = 1-p, and X = 3¢ V.
Then, (X») is a Markov chain with transition probabilities

PXinn=j+1Xi=j)=p, PXip1=j-1Xi=j)=1—p,

but we make the exception that P(X;+1 = 1|X; = 0) =pand P(X;41 = 0|X; =
0)=1-p.

(a) Show that (X,) is a Markov chain.

(b) Show that (X,,) is also irreducible.

(c) Show that the invariant distribution of the chain is given by

k
ak=(L) ap, k=1,2,...,
1=p

where ay is the probability that the chain is at k and ao is arbitrary. For
what values of p and ag is this a probability distribution?

(d) If 3 ax < oo, show that the invariant distribution is also the stationary
distribution of the chain; that is, the chain is ergodic.

6.23 If (X;) is arandom walk, X;,; = X, +ét, such that e; has a moment generating
function f, defined in a neighborhood of 0, give the moment generating function
of X¢41, ge+1 in terms of g; and f, when X, = 0. Deduce that there is no
invariant distribution with a moment generating function in this case.
Although the property of aperiodicity is important, it is probably less impor-
tant than properties such as recurrence and irreducibility. It is interesting that
Feller (1971, Section XV.5) notes that the classification into periodic and aperi-
odic states “represents a nuisance.” However, this is less true when the random
variables are continuous.

6.24 (Continuation of Problem 6.22)

(a) Using the definition of periodic given here, show that the random walk of
Problem 6.22 is periodic with period 2.

(b) Suppose that we modify the random walk of Problem 6.22 by letting 0 <
P+ g < 1 and redefining

1 with probability p
Y;=(¢0  with probability 1 —p — ¢
—1 with probability g.
Show that this random walk is irreducible and aperiodic. Find the invariant

distribution, and the conditions on p and q for which the Markov chain is
positive recurrent.




#.14 Show that the multiplicative random walk
Xi+1 = Xier

is not irreducible when ¢, ~ €zp(1) and zo € R. (Hint: Show that it produces
“wo irreducible components. )

®.15 Show that in the setup of Example 6.17, the chain is not irreducible when ¢,
s uniform on [-1,1] and |6] > 1.

.16 In the spirit of Definition 6.25, we can define a uniformly transient set as a set
A for which there exists M < co with

Ez[ﬂA]SM, VzeA.

Show that transient sets are denumerable unions of uniformly transient sets.
8.17 Show that the split chain defined on X x {0,1} by the following transition
kernel:

P(Xnt1 € A x {0}/(zn,0))

= o) { P(Xnh, A 010’1: ev(ANC)
+P&Xn, AN cl': ev(ANC°) }
Hoe(Xn) {P(Xn, ANC)(1 - €) + P(Xn, AN (9 ) 48

P(Xnt1 € A x {1}|(zn,0))

(1-¢

< Yot P XA 0101: ev(ANC)

€+loe(Xn) P(Xn, AN CQ)e,

P(Xnt1 € A x {0}(zn, D)=v(ANC)(1-¢)+v(4AN €9,
P(Xnt1 € A x {1}|(zn,1)) = v(ANC)e,

satisfies

P(Xn41 € Ax {1}|Z) = ev(ANC),
P(Xn41 € Ax {0}|#,) = (AN C)+ (1 -ep(AnC)

for every &, € C x {1}. Deduce that C x {1} is an atom of the split chain (80
6.18 If C is a small set and B C C, under which conditions on B is B a small set?
6.19 If C is a small set and D = {z; P™ (2, D) > 6}, show that D is a small set for

¢ small enough. (Hint: Use the Chapman-Kolmogorov equations.)

6.20 Show that the period d given in Definition 6.23 is independent of the selected

small set C' and that this number characterizes the chain (X,).

6.21 Given the transition matrix

0.0 0.4 0.6 0.0 0.0
0.6 0.0 .35 0.0 0.05
P=1032.68 0.0 0.0 0.0 ‘
0.0 0.00.12 0.0 0.88
0.14 0.3 0.0 0.56 0.0

show that the corresponding chain is aperiodic, despite the null diagonal.
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6.7 Given the transition matrix
0.0 0.4 0.6 00 0.0
0.65 0.0 0.35 0.0 0.0
P=|0.32068 0.0 0.0 0.0 |,
0.0 0.0 0.0 0.12 0.88
0.0 0.0 00 0.56 0.44

ible and aperiodic.
3 coincides with the more
Markov chain

ponding chain is irreduc
the sense of Definition 6.1
rary states are connected when the

examine whether the corres
6.8 Show that irreducibility in
intuitive notion that two arbit

has a discrete support.
odic Markov chain on a finit

6.9 Show that an aperti
le if and only if there exists

matrix P is irreducib
zero entries. (The matrix is then called regular.)

6.10 (Kemeny and Snell 1960) Show that for a regular mat
(a) The sequence (P™) converges to 2 stochastic matrix A.
(b) Each row of A is the same probability vector 7.

(c) ALl components of 7 are positive.
(d) For every probability vector K, pP™ converges to 7.
(e)  satisfies ™ = 7P.
(Note: See Kemeny an
6.11 Show that for the m
the sense of Definition
(Xn) is pi-irreducible,
6.12 Let Y1,Y2,... be iid rv’s concentr
centrated on Nu. Define
Zn=) Y

=0

n. Is it irreducible?

e state-space with transition
N € N such that PV has no

rix P:

d Snell 1960, p. 71 for a full proof.)
easure 1 given by (6.9), the chain (Xn) is irreducible in

6.13. Show that for two measures @1 and $2, such that

the corresponding ¥i’s given by (6.9) are equivalent.
ated on Nt and Yo be another rv also con-

(a) Show that (Z) is a Markov chai
(b) Define the forward recurrence time as

Vi = inf{Zm — 1 Zm > n}.

Show that (Vi) is also & Markov chain.

(c) BV =k>1, shathat Vi, = k=1L B vV = 1, show that a renewal
occurs at n+ 1. (Hint: Show that Vi, ~ Yiin the latter case.)

6.13 Detail the proof of Theorem 6.15. In particular, show that the fact that Ke

includes a Dirac mass does not invalidate the irreducibility. (Hint: Establish

that
Es[nal = ZP;(A) > Py(ta < ),

lirri Ke(z,A) > Pa(74 < ),

Ke(z,A)=(1— e)ieiPi(x,A) >0

i=1

imply that there exists n such that K " (z,A) > 0. See Meyn and Tweedie 1993,

p- 87.)
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VR (e, — E[R(X)]) S N(0,02),

. E9[(B1 - MET[(X))]
op = = =X
{EQ[M])?
While it seems that (6.33) and (6.36) are very similar, the advantage in
wsing this approach is that o7 can be estimated much more easily due to the
wnderlving independent structure. For instance,

Y1 (St — hrg Ny)?
RN?2

& =

= a consistent estimator of a,zl.

In addition, the conditions on E?[S?] and E?[N?] appearing in Theorem
£ 68 are minimal in that they hold when the conditions of Theorem 6.67 hold
‘see Hobert et al. 2002, for a proof).

6.8 Problems

6.1 Examine whether a Markov chain (X;) may always be represented by the deter-
ministic transform X;41 = ¥(X4, €:), where (e:) is a sequence of iid rv’s. (Hint:
Consider that €; can be of infinite dimension.)

6.2 Show that if (X,) is a time-homogeneous Markov chain, the transition kernel
does not depend on n. In particular, if the Markov chain has a finite state-space,
the transition matrix is constant.

6.3 Show that an ARMA (p, q) model, defined by

P

q
Xa= Z a; Xn—i + Z ﬁjs'ﬂ—j + €n,

i=1 j=1

does not produce a Markov chain. (Hint: Examine the relation with an AR(q)
process through the decomposition

P q
Zn = Z @iZn—i + En, e — Z ,BjZn—j o= Zn,
j=1

i=1

since (Y») and (X,) are then identically distributed.)

6.4 Show that the resolvant kernel of Definition 6.8 is truly a kernel.

6.5 Show that the properties of the resolvant kernel are preserved if the geometric
distribution Geo(e) is replaced by a Poisson distribution P(A) with arbitrary
parameter .

6.6 Derive the strong Markov property from the decomposition

Ep[h(Xer1, Xesas - )Tg, Te-1,- -]

o ]
= Eu[h(Xnt1, Xnt2, . - )T, Tai, - 16 = AP(C = n|En; Za1,---)

n=1

and from the weak Markov property.
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(6.32) E™[|h(X)|?*¢] < o0

for some € > 0, then

(6:33) Vi (Sn()/n ~ EFR(X)]) 5 N(O,7)
where +?2 is defined as in Theorem 6.65.

They first discuss the difficulty in finding such estimates, as fixed batch
mean approximations are not consistent when the batch size is fixed. We can,
however, use regeneration (Mykland et al. 1995) when available; that is, when
a minorization condition as in Sections 6.3.2 and 6.5.2 holds: there exists a
function 0 < s(z) < 1 and a probability measure Q such that, for all z € X
and all measurable sets A,

(6.34) P(z, A) > s(z) Q(A).-

Following an idea first developed in Robert (1995a) for MCMC algorithms,
Hobert et al. (2002) then construct legitimate asymptotic standard errors
bypassing the estimation of a9

The approach is to introduce the regeneration times 0 = 7o < 71 < 72 & e
associated with the Markov chain (X:) and to write S,(h) in terms of the
regeneration times, namely, W/—

Te—1

T T
Sy =32 3 (X)) =) 5,

t=l j=7'¢...1 t

where the S;’s are the partial sums appearing in Theorem 6.63, which are iid.
If we define the inter-regeneration lengths Ny = 7t — Tt—1, then

- ZT—l S’t §T 1 Fr—1
e e it gty S
B o B e L 90 ;

converges almost surely to E” [R(X)] when T goes to infinity, by virtue of the
Ergodic Theorem (Theorem 6.63), since T converges almost surely to 0.

By Theorem 6.37, EQ[N:] = 1/E7[s(X )] (which is assumed to be finite).
It follows from the Strong Law of Large Numbers that N converges almost
surely to E2[N;], which together with (6.35) implies that St converges almost
surely to E®[N1]E"[h(X )]. This implies in particular that E@[|S]] < oo and
EQ[S;] = EQ[N1]E"[h(X)]. Hence, the random variables S; — Nt E™[h(X)],
are iid and centered. Thus

Theorem 6.68. IfEQ[S?] and E?[N{] are both finite, the Central Limit The-
orem applies:




=

=
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Fig. 6.2. Histogram of 2500 means (each based on 50 observations) from an AR(1)
chain. The left panel corresponds to § = .5, which results in an ergodic chain. The
right panel corresponds to 6 = 2, which corresponds to a transient chain.

Fig. 6.3. Trajectories of mean (solid line) and standard deviation (dashed line) from
the AR(1) process of Example 6.66. The left panel has 6 = .5, resulting in an ergodic
Markov chain, and displays convergence of the mean and standard deviation. The
right panel has # = 1.0001, resulting in a transient Markov chain and no convergence.

6.7.2.3 Geometric Ergodicity and Regeneration

There is yet another approach to the Central Limit Theorem for Markov
chains. It relies on geometric ergodicity, a Liapounov-type moment condition
on the function k, and a regeneration argument. Hobert et al. (2002), extend-
ing work of Chan and Geyer (1994) (see Problem 6.66), give specific conditions
for Theorem 6.67 to apply, namely for Liapounov condition to apply and a
consistent estimate of 77 to be found.

Theorem 6.67. If (X,,) is aperiodic, irreducible, positive Harris recurrent
with invariant distribution ™ and geometrically ergodic, and if, in addition,
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6.7.2.2 Reversibility

The following theorem avoids the verification of a drift condition, but rather
requires the Markov chain to be reversible (see Definition 6.44).

With the assumption of reversibility, this Central Limit Theorem directly
follows from the strict positivity of 7,. This was established by Kipnis and
Varadhan (1986) using a proof that is beyond our reach.

Theorem 6.65. If (X,,) is aperiodic, irreducible, and reversible with invariant
distribution 7, the Central Limit Theorem applies when

0 <72 =Ex[g?(Xo)| +2 Y Ex[g(X0)g(Xx)] < +o0.
k=1

The main point here is that even though reversibility is a very restrictive
assumption in general, it is often easy to impose in Markov chain Monte
Carlo algorithms by introducing additional simulation steps (see Geyer 1992,
Tierney 1994, Green 1995). See also Theorem 6.77 for another version of the
Central Limit Theorem, which relies on a “drift condition” (see Note 6.9.1)
similar to geometric ergodicity.

Example 6.66 (Continuation of Example 6.43). For the AR(1) chain,
the transition kernel corresponds to the N (fz,—1,0?) distribution, and the
stationary distribution is N'(0,0%/(1—62)). It is straightforward to verify that
the chain is reversible by showing that (Problem 6.65)

Xyt | Xy =5 N(0zn,0?) and Xp|Xns1 ~ N(0zpi1,0%).

Thus the chain satisfies the conditions for the CLT.

Figure 6.2 shows histograms of means for the cases of @ =5 and 0'= 2.’ In
the first case (left panel) we have a positive recurrent chain that satisfies the
conditions of the CLT. The right panel is most interesting, however, because
0 — 2 and the chain is transient. However, the histogram of the means “looks”
quite well behaved, giving no sign that the chain is not converging.

It can happen that null recurrent and transient chains can often look well
behaved when examined graphically through some output. However, another
picture shows a different story. In Figure 6.3 we look at the trajectories of
the cumulative mean and standard deviation from one chain of length 1000.
There, the left panel corresponds to the ergodic case with 6 = .5, and the right
panel corresponds to the (barely) transient case of § = 1.0001. However, it is
clear that there is no convergence. See Section 10.4.3 for the manifestation of
this in MCMC algorithms. I
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£.7.2.1 The Discrete Case

The discrete case can be solved directly, as shown by Problems 6.50 and 6.51.
Theorem 6.64. If (X,,) is Harris positive with an atom o such that

s 2
(6.31) Ea[r2] <00, E, [(Z Ih(Xn)|) J < oo

n=1

and

n=1

e 2
7 =7(a) Ea [(Z {h(Xn) - E’f[h]}) } >0,

the Central Limit Theorem applies; that is,
1 2 7
— h(Xn) —E™[A]) | ~ N(0,43) .
ﬁ(;un) [])) ©.7)

Proof. Using the same notation as in the proof of Theorem 6.63, if h denotes
A —E™[h], we get

en Ta .
\/% Z Si(R) S N (o,ma [Z E(Xn)J ) :

following from the Central Limit Theorem for the independent variables S; 7,
while N/¢y converges a.s. to Eq[Sp(1)] = 1/7(c). Since

en—1 2% N X -~
> Sih) - D R(Xk)| < Sen([R))
i=1 k=1
and -
£3in 14l = T
Jim =57 Su(lBD? = EalSo(RI)?
Jj=1
we get e
, Sey (|h])
lim sup —=—* =0,
Nowo VN
and the remainder goes to 0 almost surely. O

This result indicates that an extension of the Central Limit Theorem to the
nonatomic case will be more delicate than for the Ergodic Theorem: Condi-
tions (6.31) are indeed expressed in terms of the split chain (X,,). (See Section
12.2.3 for an extension to cases when there exists a small set.) In Note 6.9.1,

we present some alternative versions of the Central Limit Theorem involving
a drift condition.
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Proof. If (i) holds, take f to be the indicator function of a set A with finite
measure and g an arbitrary function with finite and positive integral. If m(A) >
0,

P,(X € A infinitely often) =1

for every ¢ € X, which establishes Harris recurrence.

If (ii) holds, we need only to consider the atomic case by a splitting argu-
ment. Let o be an atom and 7q(k) be the time of the (k + 1)th visit to a. If
¢y is the number of visits to « at time N, we get the bounds

EN—l Ta(j+1)

N
W0 w S SpEHyE D o)
k=1

j=0 n=7a(j)+1
Ta(j+1) 7a(0)

N
TR f(acn)+k§_:1 f (=) -

j=0 n=1o(j)+1

The blocks
Ta(j+1)

S S i f(en)

n=7a(j)+1

are independent and identically distributed. Therefore,

T e o tn (e Silf)+ Tz flan)/in
S o) S In-1 T s@/Un-D

j=0

The theorem then follows by an application of the strong Law of Large Num-
bers for iid rv’s. O

An important aspect of Theorem 6.63 is that m does not need to be a
probability measure and, therefore, that there can be some type of strong
stability even if the chain is null recurrent. In the setup of a Markov chain
Monte Carlo algorithm, this result is sometimes invoked to justify the use of
improper posterior measures, although we fail to see the relevance of this kind
of argument (see Section 10.4.3).

6.7.2 Central Limit Theorems

There is a natural progression from the Law of Large Numbers to the Central
Limit Theorem. Moreover, the proof of Theorem 6.63 suggests that there is a
direct extension of the Central Limit Theorem for iid variables. Unfortunately
this is not the case, as conditions on the finiteness of the variance explicitly
involve the atom « of the split chain. Therefore, we provide alternative con-
ditions for the Central Limit Theorem to apply in different settings.
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Proposition 6.61 can be interpreted as a continuity property of the tran-
sition functional Kh(z) = E;[h(X;)] in the following sense. By induction. a
Barmonic function h satisfies h(z) = E.[h(X,)] and by virtue of Theorem
8.353. h(z) is almost surely equal to E7[h(X)]; that is, it is constant almost
everywhere. For Harris recurrent chains, Proposition 6.61 states that this im-
plies h(z) is constant everywhere. (Feller 1971, pp. 265-267, develops a related
spproach to ergodicity, where Harris recurrence is replaced by a regularity
constraint on the kernel.)

Proposition 6.61 will be most useful in establishing Harris recurrence of
some Markov chain Monte Carlo algorithms. Interestingly, the behavior of
Hounded harmonic functions characterizes Harris recurrence, as the converse
of Proposition 6.61 is true. We state it without its rather difficult proof (see
AMeyn and Tweedie 1993, p. 415).

Lemma 6.62. For Harris recurrent Markov chains, the constants are the only
Sounded harmonic functions.

A consequence of Lemma 6.62 is that if (X,,) is Harris positive with sta-
tionary distribution 7 and if S, (h) converges po-almost surely (uo a.s.) to

/X (e} )

for an initial distribution pg, this convergence occurs for every initial distri-
bution p. Indeed, the convergence probability

Py (Sn(h) — E"[R])

is then harmonic. Once again, this shows that Harris recurrence is a superior
type of stability in the sense that almost sure convergence is replaced by
convergence at every point.

Of course, we now know that if functions other than bounded functions
are harmonic, the chain is not Harris recurrent. This is looked at in detail in
Problem 6.59.

The main result of this section, namely the Law of Large Numbers for
Markov chains (which is customarily called the Ergodic 1heorem), guarantees

the convergence of S, (h).

Theorem 6.63. Ergodic Theorem If (X,,) has a o-finite invariant measure
m, the following two statements are equivalent:

(i) If f,g € L* () with [ g(z)dn(z) # 0, then

i Snf) _ J f(@)dn(2)
ot Sn(g) fg(.’t)dw(x) :

(ii) The Markov chain (X,,) is Harris recurrent.
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6.7.1 Ergodic Theorems

Given observations X, ... ; Xn of a Markov chain, we now examine the lim-
iting behavior of the partial sums

Su(h) = = " h(x3)
i=1

when n goes to infinity, getting back to the iid case through renewal when
(X») has an atom. Consider first the notion of harmonic functions, which is
related to ergodicity for Harris recurrent Markoy chains.

Definition 6.60. A measurable function % is harmonic for the chain (Xn) if
E[R(Xnt1)|zn] = h(z,).

These functions are invariant for the transition kernel (in the functional
sense) and they characterize Harris recurrence as follows.

Proposition 6.61. For o positive Markov chain, if the only bounded har-
monic functions are the constant functions, the chain is Harris recurrent.

Proof. First, the probability of an infinite number of returns, Q(z,A) =
Pr(na = 00), as a function of z, h(z), is clearly a harmonic function. This is
because

Ey[A(X1)] = Ey[Px, (n4 = 00)] = P,(na = 00),

and thus, Q(z, A) is constant (in z).

The function Q(z, A) describes a tail event, an event whose occurrence
does not depend on Xj, X2,...,Xp,, for any finite m. Such events generally
obey a 0 — 1 law, that is, their probabilities of occurrence are either 0 or 1.
However, 0 — 1 laws are typically established in the independence case, and,
unfortunately, extensions to cover Markov chains are beyond our scope. (For
example, see the Hewitt-Savage 0 — 1 Law, in Billingsley 1995, Section 36.)
For the sake of our proof, we will just state that Q(z, A) obeys a 0 — 1 Law
and proceed.

If 7 is the invariant measure and m(4) > 0, the case Q(z, A) =0is
impossible. To see this, suppose that Q(z, A) = 0. It then follows that the
chain almost surely visits A only a finite number of times and the average

1 N
& 2 LX)
i=1

will not converge to m(A), contradicting the Law of Large Numbers (see The-
orem 6.63). Thus, for any z, Qo A= establishing that the chain is a
Harris chain. O
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chapters we will see that this last section is essential to the processing of
these algorithms. In fact, the different convergence results (ergodicity) ob-
ained in Section 6.6 deal only with the probability measure P? (through
different norms), which is somewhat of a “snapshot” of the chain (X) at
sime n. So, it determines the probabilistic properties of average behavior of
+he chain at a fixed instant. Such properties, even though they provide justi-
Secation for the simulation methods, are of lesser importance for the control
of convergence of a given simulation, where the properties of the realization
{r,.) of the chain are the only characteristics that truly matter. (Meyn and
Tweedie 1993 call this type of properties “sample path” properties.)

We are thus led back to some basic ideas, previously discussed in a statis-
tical setup by Robert (2001, Chapters 1 and 11); that is, we must consider the
difference between probabilistic analysis, which describes the average behavior
of samples, and statistical inference, which must reason by induction from the
observed sample. While probabilistic properties can justify or refute some sta-
sistical approaches, this does not contradict the fact that statistical analysis
must be done conditional on the observed sample. Such a consideration can
lead to the Bayesian approach in a statistical setup (or at least to considera-
sion of the Likelihood Principle; see, e.g., Berger and Wolpert 1988, or Robert
2001, Section 1.3). In the setup of Markov chains, a conditional analysis can
take advantage of convergence properties of P to 7 only to verify the conver-
gence, to a quantity of interest, of functions of the observed path of the chain.
Indeed, the fact that ||[P? — || is close to 0, or even converges geometrically
fast to 0 with speed p" (0 < p < 1), does not bring direct information about
the unique available observation from P, namely X,.

The problems in directly applying the classical convergence theorems (Law
of Large Numbers, Law of the Iterated Logarithm, Central Limit Theorem,
etc.) to the sample (Xi,..., X,) are due both to the Markovian dependence
structure between the observations X; and to the non-stationarity of the se-
quence. (Only if Xo ~ , the stationary distribution of the chain, will the
chain be stationary. Since this is equivalent to integrating over the initial con-
ditions, it eliminates the need for a conditional analysis. Such an occurrence,
especially in Markov chain Monte Carlo, is somewhat rare.*)

We therefore assume that the chain is started from a point Xo whose dis-
tribution is not the stationary distribution of the chain, and thus we deal
with non-stationary chains directly. We begin with a detailed presentation of
convergence results equivalent to the Law of Large Numbers, which are often
called ergodic theorems. We then mention in Section 6.7.2 various versions
of the Central Limit Theorem whose assumptions are usually (and unfortu-
nately) difficult to check.

4 Nonetheless, there is considerable research in MCMC theory about perfect simu-
lation; that is, ways of starting the algorithm with Xo ~ 7. See Chapter 13.
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Definition 6.58. The chain (X,,) is uniformly ergodic if

lim sup [|[K"(z, ) —7llry =0.
n—oo TEX

Uniform ergodicity can be established through one of the following equivalent
properties:

Theorem 6.59. The following conditions are equivalent:
(a) (X,) is uniformly ergodic;
(b) there exist R < 0o and r > 1 such that
IK™(z,-) = 7llrv < Rr—™, forallx e X ;

(c) (X») is aperiodic and X is a small set;
(d) (Xn) is aperiodic and there ezist a small set C and a real k > 1 such that

sup E;[k"°] < .
zEX

If the whole space X is small, there exist a probability distribution, ¢, on
X, and constants € < 1, § > 0, and n such that, if ©(A) > € then

inf K"(z,A)>6.
TEX

This property is sometimes called Doeblin’s condition. This requirement shows
the strength of the uniform ergodicity and suggests difficulties about the ver-
ification. We will still see examples of Markov chain Monte Carlo algorithms
which achieve this superior form of ergodicity (see Example 10.17). Note,
moreover, that in the finite case, uniform ergodicity can be derived from the
smallness of X since the condition

P(Xny1 =y|Xp = z) > inf P2y = py for every xz,y € X,
z

leads to the choice of the minorizing measure v as

Py
wWill= ==
ZzEX Pz
as long as p, > 0 for some y € X. (If (X,,) is recurrent and aperiodic, this
positivity condition can be attained by a subchain (Yim) = (Xna) for d large
enough. See Meyn and Tweedie 1993, Chapter 16, for more details.)

6.7 Limit Theorems

Although the notions and results introduced in the previous sections are im-
portant in justifying Markov chain Monte Carlo algorithms, in the following
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Definition 6.55. An accessible atom « is geometrically ergodic if there exists
= > 1 such that

o

3 KM (a,0) —7(@)] " <00

n=1

=i o is a Kendall atom if there exists Kk > 1 such that
Ea[c™] < 00.

If o is a Kendall atom, it is thus geometrically ergodic and ensures geo-
metric ergodicity for (Xn):

Theorem 6.56. If (X,,) is y-irreducible, with invariant distribution 7, and
& there exists a geometrically ergodic atom c, then there existr > 1, Kk > 1,
 =md R < oo such that, for almost every T € X,

oo
Z | K™(z,-) — 7llrv < REq [ <o s
n=1
Example 6.57. Nongeometric returns to 0. For a chain on Z, with
sransition matrix P = (p;;) such that

poj =j» Pij =Bi» Pjo=1-"0 N =l

J

Meyn and Tweedie (1993, p. 361) consider the return time to 0, 79, with mean
Eolro] = Y7 {(1—B;) +2B;(1—B5) +---}
)
=> % {1+-8)7}
J
The state 0 is thus an ergodic atom when all the ~;’s are positive (yielding

irreducibility) and Y-, v;(1 - ;)™ < co. Now, for r > 0,

o

Eofr™] =3 yE ™ =rY_ %) 81 =5)-
j ;

k=0

Forr > 1,if B — 1asj — oo, the series in the above expectation always
diverges for j large enough. Thus, the chain is not geometrically ergodic. |

6.6.3 Uniform Ergodicity

The property of uniform ergodicity is stronger than geometric ergodicity in
+he sense that the rate of geometric convergence must be uniform over the
whole space. It is used in the Central Limit Theorem given in Section 6.7.
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6.6.2 Geometric Convergence

The convergence (6.28) of the expectation of h(z) at time n to the expecta-
tion of h(z) under the stationary distribution 7 somehow ensures the proper
behavior of the chain (X,) whatever the initial value X (or its distribution).
A more precise description of convergence properties involves the study of the
speed of convergence of K™ to 7. An evaluation of this speed is important for
Markov chain Monte Carlo algorithms in the sense that it relates to stopping
rules for these algorithms; minimal convergence speed is also a requirement
for the application of the Central Limit Theorem.

To study the speed of convergence more closely, we first introduce an
extension of the total variation norm, denoted by || - ||», which allows for an
upper bound other than 1 on the functions. The generalization is defined by

I = st / o(e)(dz)

Definition 6.54. A chain (X,) is geometrically h-ergodic, with h > 1 on
X, if (X,) is Harris positive, with stationary distribution m, if (X,) satisfies
E7[h] < oo, and if there exists 5, > 1 such that

oo

(6.30) Y rhlE (@) = 7lla < 0o

n=1

for every z € X. The case h = 1 corresponds to the geometric ergodicity of
(Xn)-

Geometric h-ergodicity means that |K™(z,-) — 7|5 is decreasing at least
at a geometric speed, since (6.30) implies

IK™(2,) = 7lln < Mr,™

o0
M=) rRIK™ =) —7lln -
n=1

If (X,) has an atom «, (6.30) implies that for a real number r > 1,

n=1

E, [i h(Xn)r"} < oo and i | Po(Xn € @) — 7(a)|r™ < o0.
n=1 b

The series associated with [Py (X, € @) — m()| 7™ converges outside of the
unit circle if the power series associated with P, (7, = n) converges for values
of |r| strictly larger than 1. (The proof of this result, called Kendall’s Theorem,
is based on the renewal equations established in the proof of Proposition 6.31.)
This equivalence justifies the following definition.
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since. by definition, K"*(z,dy) = [ K"(z,dw)K (w,dy) and by the invari-
ance of 7, m(dy) = [ K(w,dy)n(dw). Regrouping terms, we can write,

2“ / B Slda) —

Y.

= sup

|h|<1 / [/ h(y)K(“”dy)] K™(x,dw)p(dz)

- [ [ st )| e |

/ NS T / b eo)an{an) i

< sup
|h[£1

where the inequality follows from the fact that the quantity in square brackets
is a function with norm less than 1. Hence, monotonicity of the total variation
norm is established. 7 O

Note that the equivalence (6.26) also implies the convergence
(6.27) lim [Eu[h(X)] ~ ETA(X)]| =0

for every bounded function h. This equivalence is, in fact, often taken as the
defining condition for convergence of distributions (see, for example, Billings-
ley 1995, Theorem 25.8). We can, however, conclude (6.27) from a slightly
weaker set of assumptions, where we do not need the full force of Harris re-
currence (see Theorem 6.80 for an example).

The extension of (6.27) to more general functions h is called h-ergodicity
by Meyn and Tweedie (1993, pp. 342-344).

Theorem 6.53. Let (X,,) be positive, recurrent, and aperiodic.
(a) If E™[|h(X)|] = o0, Eg[|h(Xn)[] — oo for every z.
(b) If [ |h(z)|m(dz) < oo, then

(6.28) im  sup  |Ey[m(Xn)] - EF[m(X)]| =0

700 Im(z) |<|h(z)|

on all small sets C such that

Tc—1
(6.29) sup E, [Z h(Xt)] <00
t=0

yel

Similar conditions appear as necessary conditions for the Central Limit
Theorem (see (6.31) in Theorem 6.64). Condition (6.29) relates to a coupling
argument, in the sense that the influence of the initial condition vanishes “fast
enough,” as in the proof of Theorem 6.63.
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Theorem 6.50. For q positive recurrent aperiodic Markov chain on a count-
able space, for every initial state T,

nl-l—»ngc ”Kn(xa ) 3 7r”TV =0.

Proof. Since (X,,) is positive recurrent, E,[7,] is finite by Theorem 6.37.
Therefore, m,, is finite, (6.25) holds, and every atom is ergodic. The result
follows from Proposition 6.48. O

For general state-spaces X, Harris recurrence is nonetheless necessary in
the derivation of the convergence of K™ to . (Note that another characteri-
zation of Harris recurrence is the convergence of ||K7' — 77y to 0 for every
value z, instead of almost every value.)

Theorem 6.51. If (X,,) is Harris positive and aperiodic, then

lim / K"(z, )u(dz) — = =0
n—oo TV

for every initial distribution 7o

This result follows from an extension of the denumerable case to strongly
aperiodic Harris positive chains by splitting, since these chains always allow
for small sets (see Section 6.3.3), based on an equivalent to the “first entrance

and last exit” formula (6.23). It is then possible to move to arbitrary chains
by the following result.

Proposition 6.52. If 1 is an invariant distribution for P, then

|/ & i) -

TV

is decreasing in n.

Proof. First, note the equivalent definition of the norm (Problem 6.40)

(6.26) Hilfry = gli}g [ [ heuas)|.

We then have

2 /K”+1(x,-)u(dx)—7r L

= sup | [ K@K, dyp(ae) - / h(y)w(dy)(

[r|<1

= D / h(y) / K™ (2, dw)K (w, dy)u(de)

[R|<1

_/ h(y)/K(w,dy)w(dw) ‘,
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wime it takes for the two chains to meet), is finite for almost every starting
peint, the ergodicity of the chain follows.

For a recurrent atom « on a denumerable space X, let 7, (k) denote the
gh visit toa (k =1,2,...), and let p = (p(1),p(2),---) be the distribution
== the excursion time,

Sk =Talk+1) — Bl )y

Between two visits to a. If ¢ = (¢(0),q(1),...) represents the distribution of
~.(1) (which depends on the initial condition, zo or u), then the distribution
of 7.(n+1) is given by the convolution product gxp™ (that is, the distribution
of the sum of n iid rv’s distributed from p and of a variable distributed from
g). since

To(n+1) = Sp + -+ + 81+ 7a(l).

Thus, consider two sequences (S;) and (S;) such that S1,52,... and
S7.85,... are iid from p with So ~ ¢ and Sy ~ r. We introduce the indi-
cator functions

n n
Zy(n) = Z]I51+~-~+Sj=n and Z.(n) = Z]IS{+---+S;=1H
j=0 =0

which correspond to the events that the chains (X,) and (X,) visit « at time
n. The coupling time is then given by

T, = min {j; Z4(4) = Z:(§) = 1},

which satisfies the following lemma, whose proof can be found in Problem
6.45.

Lemma 6.49. If the mean excursion time satisfies

e <]

mp = Z np(n) < oo

n=0

and if p is aperiodic (the g.c.d. of the support of p is 1 ), then the coupling
time Tpq is almost surely finite, that is,

P(qu < OO) =1 )
for every q.

If p is aperiodic with finite mean my, this implies that Z, satisfies

(625) Tim [P(Zg(w) = 1) =mg"| =0,

as shown in Problem 6.42. The probability of visiting o at time n is thus
asymptotically independent of the initial distribution and this result implies
that Proposition 6.48 holds without imposing constraints in the discrete case.
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to 0 with n. The expression (6.17) of the invariant measure implies, in additios
that

W(y) = W(Q)ZPQ(X]- =Y, Ta 2 ).

F=1
These two expressions then lead to

1K™ (@,) = 7llev = 37 1K™ (@, ) — n(y)|

SZPr(Xn=ysToz 2”)
Yy

n—1| j

i A B R N k)K7*(a, a) — n(a)

=1 |k=1

X Pa(Xn—j =Y, Ta ZTL—])

S Yo PR >3).
Yy

Jj=n-—1

The second step in the proof is to show that each term in the above decompo-
sition goes to 0 as 7 goes to infinity. The first term is actually P, (74 > n) and
goes to 0 since the chain is Harris recurrent. The third term is the remainder
of the convergent series

(6.24) Do) Paly = ysm 2 = > (y).

Y Jj=1 y

The middle term is the sum over the y’s of the convolution of the two sequences
G — IZ}::l Po( Xy € a7y = k)K"‘k(a,a) — m(a)| and b, = P (G
Y,Ta = n). The sequence (an) is converging to 0 since the atom « is ergodic
and the series of the b,,’s is convergent, as mentioned. An algebraic argument

(see Problem 6.39) then implies that (6.24) goes to 0 as n goes to oo. O

chain Monte Carlo algorithm
coupling.

The coupling principle uses two chains (X,,) and (X,) associated with the
same kernel, the “coupling” event taking place when they meet in a; that is.
at the first time ng such that Xno € a and Xno € . After this instant, the
probabilistic properties of (X») and (X.) are identical and if one of the two
chains is stationary, there is no longer any dependence on initial conditions
for either chain. Therefore, if we can show that the coupling time (that is, the
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% & Ergodicity and Convergence
#8481 Ergodicity

W msidering the Markov chain (X,) from a temporal perspective, it is nat-
= == important) to establish the limiting behavior of X,: that is, To
Wt ws the chain converging? The existence (and uniqueness) of an invariant
e wsion = makes that distribution a natural candidate for the limiting
e wion. and we now turn to finding sufficient conditions on (Xy) for X,
. e ssymptotically distributed according to 7. The following theorems are
Sumismental convergence results for Markov chains and they are at the core
" "% metivation for Markov chain Monte Carlo algorithms. They are, un-
Ssmasely. if not surprisingly, quite difficult to establish and we restrict the
et to the countable case, the extension to the general case being detailed
= M and Tweedie (1993, pp. 322-323).

These are many conditions that can be placed on the convergence of P2,
e Sssribution of X, to m. Perhaps, the most fundamental and important
& “hes of ergodicity, that is, independence of initial conditions.

DeEmition 6.47. For a Harris positive chain (X, ), with invariant distribution
= am stom a is ergodic if

nllrr;o |K™(a, @) — ()| =0.

B the countable case, the existence of an ergodic atom is, in fact, sufficient
0 ==sahlish convergence according to the total variation norm,

llp1 — pollrv = e |1 (A) — pu2(A)].

Pespesition 6.48. If (X,) is Harris positive on X and denumerable, and if
W emsts an ergodic atom o C X, then, for every x € X,

lim ||K™(z,-)—7|l7v =0.
n—oo

P’ The first step follows from a decomposition formula called “first en-
Smmee and last exit”:

BNz y) = (Xn=9Ta 2 n)
n—1 j

/)
+ 3" Pu(Xk € @, 2 KT (2 0)
L K=1
w= XPa(Xn—j=y,Ta2n—j),

j=

Sk selates K™(z.y) to the last visit to a. (See Problem 6.37.) This shows
S s=mced influence of the initial value z, since P; (Xn =y, Ta = n) converges
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does not matter in the dynamics of the chain (see also Problems 6.53 smt
6.54).

Definition 6.44. A stationary Markov chain (X,,) is reversible if the dissse
bution of X, i conditionally on X, = z is the same as the distribution =
Xn+1 conditionally on X,, = x.

In fact, reversibility can be linked with the existence of a stationary mes
sure 7 if a condition stronger than in Definition 6.35 holds.

Definition 6.45. A Markov chain with transition kernel K satisfies the fe
tailed balance condition if there exists a function f satisfying

for every (z,y).

While this condition is not necessary for f to be a stationary measuse
associated with the transition kernel K, it provides a sufficient condition thas
is often easy to check and that can be used for most MCMC algorithms. The
balance condition (6.22) express an equilibrium in the flow of the Markes
chain, namely that the probability of being in z and moving to y is the same
as the probability of being in y and moving back to z. When f is a density.
it also implies that the chain is reversible.® More generally,

Theorem 6.46. Suppose that a Markov chain with transition function K sat-
isfies the detailed balance condition with w a probability density function. Thes

(i) The density 7 is the invariant density of the chain.
(i1) The chain is reversible.

Proof. Part (i) follows by noting that, by the detailed balance condition. for
any measurable set B,

/y K(y, B)m(y)dy = /y /B K(y, z)m(y)dzdy
=/y/BK(x,y)7r(a:)dxdy=/B7r(m)d:c,

since [ K(z,y)dy = 1. With the existence of the kernel K and invariant den-
sity 7, it is clear that detailed balance and reversibility are the same properts.

-

o

If f(z,y) is a joint density, then we can write (with obvious notation)

f(z,y) = fxiy(zly) fr (y)
f(z,y) = frix(ylz) fx (z),

and thus detailed balance requires that fx = fy and f x|y = fy|x, that is.
there is symmetry in the conditionals and the marginals are the same.

3 If there are no measure-theoretic difficulties with the definition of the kernel K.
both notions are equivalent.
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» sepeesentation of 7 that is associated with Kac’s Theorem, under the form

- w(A) = iPr(Nt € A)Pr(T* =1),

t=1

| shese T is an integer valued random variable and, for each t € N, N; is
» ssmdom variable whose distribution depends on t. This representation is
ey closely related to Kacmm range of applicability
e &= does not require the chain to have an atom. We simply assume that
" = morizing condition (6.10) is satisfied (and for simplicity’s sake we take
% = 1 in (6.10)). The random variables N; and T* can then be defined in
S of the split chain of Section 6.3.2. If 7 > 1 denotes the renewal time
swisted with the small set C in (6.10), then E,[rc] < oo by recurrence
WPmidem 6.32), and T™ is given by the tail probabilities of 7¢ as

PI‘U(TC = t)
E,(7c)

Wi samdom variable NV, is then logically distributed from v if t = 1 and as
' B ssmiinional on no renewal before time ¢ otherwise, following from (6.10).
Bhewer and Roberts (2000b) derive the representation (6.20) by the mean of
% Bmesional equation (see Problem 6.38):
Smelating from 7 thus amounts to simulating T* according to (6.21) and
e for T =, tO simulating N;. Simulating the latter starts from the
Smerimne measure v and then runs t — 1 steps of the residual distribution

K(z,-) — ele(@)v()
1—ele(x) '

- P(T* =t)=

R'(x,) =

B ssse= when simulating from the residual is too complex, a brute force
M Reject implementation is to run the split chain ¢ iterations until 7¢ >
& Bme thss may be too time-consuming in many situations. Hobert and Robert

" RS also propose more advanced approaches to the simulation of ™.
e that. when the state space X is small, the chain is said to be uniformly

Wi (see Definition 6.58 below), K (z,y) = (K(z,y) — ev(y))/(1 —¢€) and
S mrure representation (6.20) translates into the following algorithm.

- Mlgerithm A.23 _Kac’s Mixture Implementation—

late Xo~ v, w~ Geo(e).
+he transition X1~ K(at,°) t =0 1
take X.. !

y

%53 Reversibility and the Detailed Balance Condition

W= ssabality property inherent to stationary chains can be related to another
sssiiiny property called reversibility, which states that the direction of time
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Fig. 6.1. Trajectories of four AR(1) chains with o = 1. The first three panels show
positive recurrent chains, and a 6 increases the chain gets closer to transience. The
fourth chain with 6 = 1.0001 is transient, and the trajectory never returns.

These conditions imply that x = 0 and that 72 = 02/(1 — 6°), which ca=
only occur for || < 1. In this case, N'(0,02/(1 — 6?)) is indeed the unigses
stationary distribution of the AR(1) chain.

So if |§] < 1, the marginal distribution of the chain is a proper density
independent of n, and the chain is positive (hence recurrent). Figure 6.1 shows
the two-dimensional trajectories of an AR(1) chain, where each coordinase
is a univariate AR(1) chain. (We use two dimensions to better graphically
illustrate the behavior of the chain.)

In the first three panels of Figure 6.1 we see increasing 6, but all three aze
positive recurrent. This results in the chain “filling” the space; and we ca=
see as @ increases there is less dense filling in. Finally, the fourth chain, with
6 = 1.001, is transient, and not only it does not fill the space, but it escapes
and never returns. Note the scale on that panel.

When we use a Markov chain to explore a space, we want it to fill the
space. Thus, we want our MCMC chains to be positive recurrent. i

Note that the converse to Proposition 6.38 does not hold: there exist tras-
sient Markov chains with stationary measures. For instance, the random walks
in R3 and Z3, corresponding to Examples 6.39 and 6.40, respectively, are both
transient and have the Lebesgue and the counting measures as stationary mea-
sures (see Problem 6.25).

In the case of a general Harris recurrent irreducible and aperiodic Markow
chain (X,,) with stationary distribution 7, Hobert and Robert (2004) propos=
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2
7rk=<K> 0, k=050,

k
K\ 2
()
DRI\
k
waucs implies that the hypergeometric distribution H(2K, K,1/2) is the in-

“ssiamt distribution for the Bernoulli-Laplace model. Therefore, the chain is
pasmive. |

st shrough normalization,

K =

Example 6.42. (Continuation of Example 6.26) Assume f'(1) < 1. If
“iese exists an invariant distribution for (S,), its characteristic function g

SStIshies

% 18) 9(s) = f(s)g(0) + g[f(s)] — 9(0) .

% the simplest case, that is to say, when the number of siblings of a given
sniividual is distributed according to a Bernoulli distribution B(p), f(s) =
% — ps. where ¢ = 1 — p, and g(s) is solution of

$.19) 9(s) = g(g +ps) + p(s — 1)g(0) .
Seratively substituting (6.18) into (6.19), we obtain

9(s) = glg+ p(q + ps)] + p(q + ps — 1)g(0) + p(s — 1)g(0)
=9(a+pg+---+p g+ p*s) + 0+ -+ p*)(s — 1)9(0)

?

%r every k € N. Letting k go to infinity, we have

9(s) = gla/(1 = p)] + [p/(1 — p)](s — 1)g(0)
=1+§ (s —1)g(0) ,

smce ¢/(1 —p) =1 and g(1) = 1. Substituting s = 0 implies g(0) = ¢ and,
Sence, g(s) = 1+ p(s — 1) = g + ps. The Bernoulli distribution is thus the
svariant distribution and the chain is positive. I

Example 6.43. (Continuation of Example 6.20) Given that the transi-
=ion kernel corresponds to the N (0z,—1,0?) distribution, a normal distribu-
tion N (u, 72) is stationary for the AR(1) chain only if

©w="06u and 72 = 7262 4 o2 .
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= [ 1@y [ tay@ra) = x4

Moreover, the invariance of A\ and the uniqueness of the invariant measure
imply that the chain (X,) cannot be positive recurrent (in fact, it can be
shown that it is null recurrent). b

Example 6.40. Random walk on Z. A random walk on Z is defined by
Xn+1 = Xn & W’n;

the perturbations W, being iid with distribution 7, = P(W, = k), k
Z. With the same kind of argument as in Example 6.39, since the counting
measure on Z is invariant for (X, ), (X,,) cannot be positive. If the distribution
of W, is symmetric, straightforward arguments lead to the conclusion that

(e <]

Y Py(Xn=0)= oo,

n=1

from which we derive the (null) recurrence of (X,,) (see Feller 1970, Durrets
1991, or Problem 6.25). i

Example 6.41. (Continuation of Example 6.24) Given the quasi-diagonal
shape of the transition matrix, it is possible to directly determine the invariant
distribution, 7 = (o, ..., 7x). In fact, it follows from the equation Pir = =
that

7o = Poomo + Piom1,
™1 = Poimo + Py + Payma,

Tk = Pk_1)kTKk-1+ Pxkmk .

i v

= PlO 0,

g Py Py o
P31 Py

1

S TR < Y

T = o=
Prk—1) -+ Pro
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mdicates how positivity is a stability property stronger than recurrence. In

Bee. the latter corresponds to
Poy(ta=00)=0,

lehich is a necessary condition for Eq[Ta] < 00-

Preof. If Eo[70] < 0 Po(ta <00) =1 thus, (Xn) is recu
jsision 6.31. Consider a measure 7 given by

rrent from Propo-

w(A) = i Po(Xn € A Ta >n)

n=1

%17)

4= in (6.16). This measure s invariant since 7(@) = Py(1e <00) =1 and

/ K(z, A)r(dz) = () K (o, A) + / i K(xn,A) Py(Ta 2 dzn)
o p=1

= K(o, A) + i Po(Xn € ATa 2 n) = w(A).

n=2

% i= also finite as
2(X) =Y Palta2m) = S 3 Palta= m)
n=1

oo
=Y mPa(rta=m = Eqlral <0
m=1
is positive, the uniqueness of the invariant

f w(X), thus of B, bral. Renormalizing 7 to
(]

Since 7 is invariant when (Xn)
\ &< ribution implies finiteness 0
- =(X) implies m(a) = (Ealral)

«classical” approach, the general case can be treated by

Following a now
) and the invariant measure of

splitting (Xn) to (X,) (which has an atom
| X..) induces an invariant measure for (Xn) by marginalization. A converse

¢ Proposition 6.31 establishes the generality of invariance for Markov chains
\see Meyn and Tweedie 1993, pp- 940-245, for a proof).

Theorem 6.38. If (Xn) isa recurrent chain, there erists an invariant o-finite
weasure which is unique up to a multiplicative factor.

Example 6.39. Random walk on R. Consider the random walk on R,
i = Xp + W,,, where Wy has a cdf I'. Since K(z,") is the distribution

with cdf I'(y — ), the distribution of Xn41 18 invariant by translation, and

+his implies that the Lebesgue measure is an invariant measure:

/ K(z, ANdz) = / /A-x (dy)M(dz)
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Proof. If (X,,) is transient, there exists a covering of X' by uniformly transiess
sets, A;, with corresponding bounds

Ez[na;] £ M, Vz € Aj, Vj EN.
Therefore, by the invariance of ,

i / K w(dz) — / K™ (z, 4;) n(da).

Therefore, for every k € N,

k
km(A;) = / K™(z, A;) 7(dz) < / E.[na,] m(dz) < M;
n=0

since, from (6.8) it follows that Ei:o K™(x,A;) < Eg[na,]. Letting k go &

oo shows that 7(A4;) = 0, for every j € N, and hence the impossibility of
obtaining an invariant probability measure. o

We may, therefore, talk of positive chains and of Harris positive chains.
without the superfluous denomination recurrent and Harris recurrent. Pro-
position 6.36 is useful only when the positivity of (X,) can be proved, but.
again, the chains produced by Markov chain Monte Carlo methods are, by
nature, guaranteed to possess an invariant distribution.

6.5.2 Kac’s Theorem

A classical result (see Feller 1970) on irreducible Markov chains with discrete
state-space is that the stationary distribution, when it exists, is given by

g = (IEI[TE])—I s T EX,

where, from (6.7), we can interpret E;[7;] as the average number of excursions
between two passages in z. (It is sometimes called Kac’s Theorem.) It also
follows that (E.[r.]™!) is the eigenvector associated with the eigenvalue 1 for
the transition matrix P (see Problems 6.10 and 6.61). We now establish this
result in the more general case when (X,,) has an atom, a.

Theorem 6.37. Let (X,,) be ¥-irreducible with an atom o. The chain is pos-
itive if and only if Eq[7a] < 00. In this case, the invariant distribution m for
(Xn) satisfies

m(a) = (Ealra])™ -

The notation E,[ - ] is legitimate in this case since the transition kernel
is the same for every z € a (see Definition 6.18). Moreover, Theorem 6.37
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& &iscussion of the “almost” Harris recurrence of recurrent chains.) Tierney
1354 and Chan and Geyer (1994) analyze the role of Harris recurrence in the
setup of Markov chain Monte Carlo algorithms and note that Harris recurrence
Swids for most of these algorithms (see Chapters 7 and 10).2

£.5 Invariant Measures

% 5.1 Stationary Chains

A= increased level of stability for the chain (X,,) is attained if the marginal
“seribution of X, is independent of n. More formally, this is a requirement for
“he existence of a probability distribution 7 such that X,.1 ~ 7 if X, ~ 7,
w=d Markov chain Monte Carlo methods are based on the fact that this re-
wuirement, which defines a particular kind of recurrence called positive recur-
w=nce. can be met. The Markov chains constructed from Markov chain Monte
“arlo algorithms enjoy this greater stability property (except in very patho-
“ozical cases; see Section 10.4.3). We therefore provide an abridged description
«¢ mvariant measures and positive recurrence.

Definition 6.35. A o-finite measure 7 is invariant for the transition kernel
& -.-) (and for the associated chain) if

w(B) = /X K (z, B) n(dz) , VB € B(X) .

When there exists an invariant probability measure for a i-irreducible (hence
securrent by Theorem 6.30) chain, the chain is positive. Recurrent chains that
<o not allow for a finite invariant measure are called null recurrent.

The invariant distribution isalso referred to as stationary if 7 is a probability
measure, since Xo ~ 7 implies that X,, ~ 7 for every n; thus, the chain is
stationary in distribution. (Note that the alternative case when 7 is not finite is
more difficult to interpret in terms of behavior of the chain.) It is easy to show
that if the chain is irreducible and allows for an o-finite invariant measure,
his measure is unique, up to a multiplicative factor (see Problem 6.60). The
“nk between positivity and recurrence is given by the following result, which
“ormalizes the intuition that the existence of a invariant measure prevents the
probability mass from “escaping to infinity.”

Proposition 6.36. If the chain (X,,) is positive, it is recurrent.

* Chan and Geyer (1994) particularly stress that “Harris recurrence essentially says
that there is no measure-theoretic pathology (...) The main point about Harris
recurrence is that asymptotics do not depend on the starting distribution because
of the ‘split’ chain construction.”
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Definition 6.32. A set A is Harris recurrent if Py(na = o00) = 1forallz € A
The chain (X,,) is Harris recurrent if there exists a measure 1 such that (X.
is 1p-irreducible and for every set A with ¥(A) > 0, A is Harris recurrent.

Recall that recurrence corresponds to E;[n,] = oo, a weaker condition
than P, (na = 0o) = 1 (see Problem 6.30). The following proposition expresses
Harris recurrence as a condition on Py (74 < o0) defined in (6.8).

Proposition 6.33. If for every A € B(X), Py(14 < 00) =1 for every = € A
then Py(na = 00) =1, for allz € X, and (X,) is Harris recurrent.

Proof. The average number of visits to B before a first visit to A is

(6.16) Uiz, B).= Ex: P Xy, €Birarzin), -

n=1

Then, Uiz, A) = P:(14 < 00), since, if B C A, P.(X, € B,7a = n) =
P.(X, € B,7 =n) = P,(tg = n). Similarly, if 7a(k),k > 1, denotes the time
of the kth visit to A, 74(k) satisfies

P(TA(2) < o0) = /A Py(1a < o0) Ua(z,dy) =1

for every z € A and, by induction,

P.(ta(k+1) < o0) = /A Pr(7a(k) < 00) Ux(zydy) =1

Since P;(na = k) = Py(7a(k) < o) and

Pilna = o0)=lim. Ps(na 2 k),

k—oo
we deduce that P;(n4 =o0) =1 for z € A. O

Note that the property of Harris recurrence is needed only when A& is
not denumerable. If X is finite or denumerable, we can indeed show that
E:[n:] = oo if and only if Py(1; < o0) = 1 for every x € X, through an
argument similar to the proof of Proposition 6.31. In the general case, it is
possible to prove that if (X,,) is Harris recurrent, then P,(np = oo) = 1 for
every z € X and B € B(X) such that ¥(B) > 0. This property then provides
a sufficient condition for Harris recurrence which generalizes Proposition 6.31.

Theorem 6.34. If (X,,) is a Y-irreducible Markov chain with a small set C
such that Py(7c < o0) =1 for all z € X, then (X,) is Harris recurrent.

Contrast this theorem with Proposition 6.31, where Py(t¢ < o0) = 1
only for z € C. This theorem also allows us to replace recurrence by Harris
recurrence in Theorem 6.72. (See Meyn and Tweedie 1993, pp. 204-205 for
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% £ 2 Criteria for Recurrence

The previous results establish a clear dichotomy between transience and re-
wence for irreducible Markov chains. Nevertheless, given the requirement
& Defnition 6.29, it is useful to examine simpler criteria for recurrence. By
ssslogy with discrete state-space Markov chains, a first approach is based on
small sets.

Proposition 6.31. A y-irreducible chain (Xy) is recurrent if there exists a
wmall set C with ¥(C) > 0 such that Py(t¢ < 00) =1 for every z € C.

Pewof. First, we show that the set C is recurrent. Given z € C, consider
B — K"(z,C) and fp, = Po(Xn € C,Xn-1 ¢C,..., X3 ¢ C), which is the
seobability of first visit to C' at the nth instant, and define

U(s)=1+ E Ur 8™ and Q(s) = Z Tt
n=1 n=1

The equation
“.15) un:fn+fn—1u1 +"'+f1un—-1

Se=cribes the relation between the probability of a visit of C at time n and
she probabilities of first visit of C. This implies

~ 1

U(s) 1-00)’

which connects U(1) = Ez[nc] = oo with Q(1) = Px(7¢ < 00) = 1. Equation
16.15) is, in fact, valid for the split chain (X,,) (see Problem 6.17), since a visit
% C x {0} ensures independence by renewal. Since E.[nc], associated with
' X.). is larger than Ez[ncox{o}], associated with (Z»), and P,(t¢c < o0) for
X, is equal to Px(Tcx{oy < 00) for (X,), the recurrence can be extended
Som (&) to (X»). The recurrence of (X,) follows from Theorem 6.28, since
 x {0} is a recurrent atom for (%) oo

A second method of checking recurrence is based on a generalization of the
sotions of small sets and minorizing conditions. This generalization involves
» potential function V and a drift condition like (6.38) and uses the transition
kernel K(-,-) rather than the sequence K". Note 6.9.1 details this approach,
25 well as its bearing on the following stability and convergence results.

£.4.3 Harris Recurrence

I+ is actually possible to strengthen the stability properties of a chain (X,) by
requiring not only an infinite average number of visits to every small set but
2lso an infinite number of visits for every path of the Markov chain. Recall
that 74 is the number of passages of (X,) in A, and we consider Pina=00);
the probability of visiting A an infinite number of times. The following notion
of recurrence was introduced by Harris (1956).




220

6 Markov Chains

Definition 6.27. A set A is called recurrent if E, [n4] = +oo for every z &
A. The set A is uniformly transient if there exists a constant M such tha:
Ez[na] < M for every x € A. It is transient if there exists a covering of X by
uniformly transient sets; that is, a countable collection of uniformly transiess
sets B; such that
A=|(JB.
2

Theorem 6.28. Let (X,,) be v-irreducible Markoy chain with an accessible
atom c.

(i) If o is recurrent, every set A of B(X) such that ¥(A) > 0 is recurrent.
(i) If o is transient, X is transient.

Property (i) is the most relevant in the Markov chain Monte Carlo setup
and can be derived from the Chapman-Kolmogorov equations. Property (i}
is more difficult to establish and uses the fact that P,(1o < 00) < 1 for a
transient set when E,[n4] is decomposed conditionally on the last visit to a
(see Meyn and Tweedie 1993, p- 181, and Problem 6.29).

Definition 6.29. A Markov chain (Xn) is recurrent if 3

(i) there exists a measure ¥ such that (Xy) is ¥-irreducible, and
(ii) for every A € B(X) such that ¥(A) > 0, Ex[na] = oo for every z € A.

The chain is transient if it is y-irreducible and if X is transient.

The classification result of Theorem 6.28 can be easily extended to strongly
aperiodic chains since they satisfy a minorizing condition (6.11), thus can be
split as in (6.3.2), while the chain (Xn) and its split version (X, n) (see Problem
6.17) are either both recurrent or both transient. The generalization to an
arbitrary irreducible chain follows from the properties of the corresponding
Kc-chain which is strongly aperiodic, through the relation

o o] oo
(6.14) S kr = 1_521{",
n=0 & n=0
since
o) - )
— n = n
Ez[nA]—ZjoK (z,4) 1_62& (z, 4).

This provides us with the following classification result:

Theorem 6.30. A y-irreducible chain is either recurrent or transient.
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X . but this property is too weak to ensure that the trajectory of (Xy)
woser A often enough. Consider, for instance, a maximization problem
¢ » random walk on the surface of the function to maximize (see Chapter

The convergence to the global maximum cannot be guaranteed without

swsematic sweep of this surface. Formalizing this stability of the Markov

= Jeads to different notions of recurrence. In a discrete setup, the recurrence

" & state is equivalent to a guarantee of a sure return. This notion is thus
silv satisfied for irreducible chains on a finite space.

n 6.25. In a finite state-space X, a state w € X is transient if the
mumber of visits to w, E,[n.], is finite, and recurrent if E, [n.,] = oo.

%.r irreducible chains, the properties of recurrence and transience are prop-

4= of the chain, not of a particular state. This fact is easily deduced from

Chapman-Kolmogorov equations. Therefore, if 74 denotes the number of

e defined in (6.8), for every (z,y) € X? either E;[n,] < oo in the tran-

et case or E.[n,] = oo in the recurrent case. The chain is then said to be

Swnsent or recurrent, one of the two properties being necessarily satisfied in
e Ereducible case.

le 6.26. Branching process. Consider a population whose individ-

‘s reproduce independently of one another. Each individual has X sibling(s),

% = N_ distributed according to the distribution with generating function

s = E[s¥]. If individuals reproduce at fixed instants (thus defining gener-
wwms . the size of the tth generation S; (t > 1) is given by

Sie=X1+:+Xs,_,

; the X; ~ ¢ are independent. Starting with a single individual at time
. S — X,. the generating function of S; is g¢(s) = ¢'(s), with ¢! = po ¢'~!
= > 1. The chain (S;) is an example of a branching process (see Feller 1971,
Ehapter XIT).

I¥ & does not have a constant term (i.e., if P(X; = 0) = 0), the chain (S;)
& secessarily transient since it is increasing. If P(X; = 0) > 0, the probability
¢ & return to 0 at time t is p; = P(S; = 0) = g¢(0), which thus satisfies the
ewrrence equation p; = @(ps—1). Therefore, there exists a limit p different
%wes 1. such that p = ¢(p), if and only if ¢/(1) > 1; namely if E[X] > 1. The
= is thus transient when the average number of siblings per individual is
Swezer than 1. If there exists a restarting mechanism in 0, St+1|S:t =0~ ¢,
& = easily shown that when ¢/(1) > 1, the number of returns to 0 follows a
semetric distribution with parameter p. If ¢/(1) < 1, one can show that the
whain is recurrent (see Example 6.42). I

The treatment of the general (that is to say, non-discrete) case is based on
“hsins with atoms, the extension to general chains (with small sets) following
S Athreya and Ney's (1978) splitting. We begin by extending the notions
¢ recurrence and transience.
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where the blocks D; are stochastic matrices. This representation clearly illus=
trates the forced passage from one group of states to another, with a retus=
to the initial group occurring every dth step. If the chain is irreducible (so &%
states communicate), there is only one value for the period. An irreducibie
chain is aperiodic if it has period 1. The extension to the general case requires

the existence of a small set.

Definition 6.23. A y-irreducible chain (X,) has a cycle of length d if there
exists a small set C, an associated integer M, and a probability distributios
v such that d is the g.c.d. of

{m=1; 3 §,, > 0 such that C is small for vm = SmVM }-

A decomposition like (6.13) can be established in general. Tt is easily show=
that the number d is independent of the small set C and that this numbes
intrinsically characterizes the chain (Xn). The period of (Xp) is then defined
as the largest integer d satisfying Definition 6.23 and (Xn) is aperiodic if d = L I
If there exists a small set A and a minorizing measure V1 such that v1(A4) > 9
(so it is possible to go from A to Ain a single step), the chain is said &
be strongly aperiodic). Note that the K.-chain can be used to transform a=
aperiodic chain into a strongly aperiodic chain.

In discrete setups, if one state z € X satisfies Prz > 0, the chain (Xn) =
aperiodic, although this is not a necessary condition (see Problem 6.35).

Example 6.24. (Continuation of Example 6.14) The Bernoulli-Laplace
chain is aperiodic and even strongly aperiodic since the diagonal terms satisfy
P, > 0 for every T € {0,...,K}.

When the chain is continuous and the transition kernel has a component
which is absolutely continuous with respect to the Lebesgue measure, with
density f(-|zn), sufficient condition for aperiodicity is that £(-|zn) is positive
in a neighborhood of zn,. The chain can then remain in this neighborhood for
an arbitrary number of instants before visiting any set A. For instance, in
Example 6.3, (Xn) is strongly aperiodic when €, 18 distributed according to
Up—1,1) and 6] < 1 (in order to guarantee irreducibility). The next chapters
will demonstrate that Markov chain Monte Carlo algorithms lead to aperiodic

chains, possibly via the introduction of additional steps.

6.4 Transience and Recurrence

6.4.1 Classification of Irreducible Chains

From an algorithmic point of view, a Markov chain must enjoy good stability
properties to guarantee an acceptable approximation of the simulated model.
Indeed, irreducibility ensures that every set A will be visited by the Markov
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Ay (1 g (@n, f)_“e A gz, 4),  VAEBR),

Bt it produces renewal times for each time j such that X; € C and 9, &)

~ V.
Now we clearly see how the renewal times result in independent chains.

When X;11 ~ U, this event is totally independent of any past history, as

she current state of the chain has no effect on the measure v. Note also the
. Tt allows us to create

| &=y role that is played by the minorization condition
she split chain with the same marginal distribution as the original chain. We
@emote by (J > 0)

T = inf{n > 7j-1; Xn € C and Xni1 ~ v}

+he sequence of renewal times with 7o = 0. Athreya and Ney (1978) introduce
she augmented chain, also called the split chain X, = (Xn,wn), with @n = 1
shen X, € C and Xn11 is generated from v. It is then easy to show that the
wt & = C x {1} is an atom of the chain (X»), the resulting subchain (Xn)
heing still a Markov chain with transition kernel K (zn, ") (see Problem 6.17).

The notion of small set is useful only in finite and discrete settings when

4 individual probabilities of states are too small to allow for a reasonable

sate of renewal. In these cases, small sets are made of collections of states with

. defined as a minimum. Otherwise, small sets reduced to a single value are
also atoms.

6.3.3 Cycles and Aperiodicity

sometimes be restricted by deterministic con-
Xny1. We formalize these constraints here
hat the chains produced by Markov chain
behavior and, hence, do not suffer

The behavior of (Xn) may
<sraints on the moves from X, to
and show in the following chapters t
Monte Carlo algorithms do not display this

&om the associated drawbacks.
In the discrete case, the period of a state w € X is defined as

dw) =g.cd. {m2= 1; K™(w,w) >0},

where we recall that g.c.d. is the greatest common denominator. The value of
t+he period is constant on all states that communicate with w. In the case of
an irreducible chain on a finite space X, the transition matrix can be written
| with a possible reordering of the states) as a block matrix

0 Dy 0 -0
0 0Dy O
(6.13) P= ' ,

Dg 0 0
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The proof of this characterization result is rather involved (see Meyn and
Tweedie 1993, pp- 107-109). The decomposition of X as a denumerable unios
of small sets is based on an arbitrary small set C' and the sequence

On= {y;K"(y,C’) > 1/m}

(see Problem 6.19).

Small sets are obviously easier to exhibit than atoms, given the freedom
allowed by the minorizing condition (6.11). Moreover, they are, in fact, ver¥
common since, in addition to Theorem 6.21, Meyn and Tweedie (1993. &
134) show that for sufficiently regular (in 2 topological sense) Markov chains.
every compact set is small. Atoms, although a special case of small sets, enjox
stronger stability properties since the transition probability is invariant on &
However, splitting methods (see below) offer the possibility of extending most
of these properties to the general case and it will be used as a technique of
proof in the remainder of the chapter.

If the minorizing condition holds for (Xy), there are two ways of deriving
a companion Markov chain (X,) sharing many properties with (Xn) and
possessing an atom &. The first method is called Nummelin’s splitting and
constructs a chain made of two copies of (Xn) (see Nummelin 1978 and Meyn
and Tweedie 1993, Section 5l

A second method, discovered at approximately the same time, is due t@
Athreya and Ney (1978) and uses a stopping time to create an atom. We prefer
to focus on this latter method because it is related to notions of renewal time.
which are also useful in the control of Markov chain Monte Carlo algorithms
(see Section 12.2:3):

Definition 6.22. A renewal time (or regeneration time) is a stopping rule 7
with the property that ( X7y Xrt1s-- .) is independent of (Xr—1,Xr=2)-- J)2

For instance, in Example 6.12, the returns to zero gain are renewal times.
The excursions between two returns to zero are independent and identically
distributed (see Feller 1970, Chapter III). More generally, visits to atoms are
renewal times, whose features are quite appealing in convergence control for
Markov chain Monte Carlo algorithms (see Chapter 12).

If (6.10) holds and if the probability P,(tc < o) of a return to C in a
finite time is identically equal to 1 on &, Athreya and Ney (1978) modify the
transition kernel when X, €C,by simulating Xn+1 as

with probability €
(6.12)

v
X,n ~ o) = .
e ﬁ&’ll):zgfy(‘) with probability 1 —&;

that is, by simulating Xp4 from v with probability € every time Xp isin C.
This modification does not change the marginal distribution of Xn+1 condi-
tionally on Zn, since
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While it trivially applies to every possible value of X,, in the discrete case,
"= motion is often too strong to be of use in the continuous case since it
ampies that the transition kernel is constant on a set of positive measure.
& more powerful generalization is the so-called minorizing condition, namely
“has there exists a set C € B(X), a constant € > 0, and a probability measure
» smch that

#%.10) K(z,A) > ev(A), Yz € C, VA€ B(X) .

e probability measure v thus appears as a constant component of the tran-
swon kernel on C. The minorizing condition (6.10) leads to the following
swsion. which is essential in this chapter and in Chapters 7 and 12 as a tech-
2uaue of proof and as the basis of renewal theory.

Definition 6.19. A set C is small if there exist m € N* and a nonzero mea-
sare ¥, such that

$11) K™z, A) > vm(4), VzeC, VAeBX).

Example 6.20. (Continuation of Example 6.17) Since X,|z,_1 ~
N #r,. 1,0?), the transition kernel is bounded from below by

5= eXp {(—22 + 20z,w — 6*w® AT?)/20%} if 2, > 0,
oV/2m

ii

= P {(~22 + 0z, W02 — 0?w? AW?)/20°} if 2, <O,
g ™

when r,_; € [w,W|. The set C = [w, W] is indeed a small set, as the measure
»-. with density

exp{(—2? + 20zw)/20?} L>0 + exp{(—22 + 202W)/202} L. <o
V27 o[®(—0w/0?) exp{62w?/202} + [1 — B(—Ow/0?)] exp{62w?/202}]

and

e = exp{~6°w?/20%) [B(~0w/0?) exp{6?u?/20%)
+ [1 - &(~0u/0)] exp{0°/207)] |

satisfy (6.11) with m = 1. I

A sufficient condition for C' to be small is that (6.11) is satisfied by the K-
chain in the special case m = 1. The following result indicates the connection
between small sets and irreducibility.

Theorem 6.21. Let (X,,) be a y-irreducible chain. For every set A € B(X)
such that ¥(A) > 0, there exist m € N* and a small set C C A such that
the associated minorizing measure satisfies vm(C) > 0. Moreover, X can be
decomposed in a denumerable partition of small sets.
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Theorem 6.16. If (X,) is p-irreducible, there erists a probability measure ©
such that:

(i) the Markov chain (X,) is Y-irreducible;
(ii) if there exists a measure € such that (X») 15 ¢-irreducible, then § is dom-
inated by ¥; that is, § K Y;
(iii) if (A) = 0, then Y({y; Py(Ta < 00) > 0}) = 0;
(iv) the measure ¥ is equivalent to

69)  to(4) = /X Kijp(@ A) p(ds),  VA€BA);

that is, ¥ < ¥o and Yo K .

This result provides a constructive method of determining the maximal
irreducibility measure ¥ through a candidate measure ¢, which still needs to
be defined.

Example 6.17. (Continuation of Example 6.6) When Xn41 = 0Xnsh
€n+1 and e, are independent normal variables, the chain is irreducible, the
reference measure being the Lebesgue measure, A. (In fact, K(z,A) >0 for
every ¢ € R and every A such that A(A) > 0.) On the other hand, if €.
is uniform on [—1,1] and |6] > 1, the chain is not irreducible anymore. For
instance, if § > 1, then

Xn+1_X-n_>_(6—1)Xn—1_>_0

for X, > 1/(6 —1). The chain is thus monotonically increasing and obviously
cannot visit previous values. Il

6.3.2 Atoms and Small Sets

In the discrete case, the transition kernel is necessarily atomic in the usual
sense; that is, there exist points in the state-space with positive mass. The
extension of this notion to the general case by Nummelin (1978) is powerful
enough to allow for a control of the chain which is almost as “precise” as in
the discrete case.

Definition 6.18. The Markov chain (X,) has an atom a € B(X) if there
exists an associated nonzero measure ¥ such that

K(z, A) = v(4), Yz € a, VA € B(X) .

If (X,) is ¢-irreducible, the atom is accessible when ¥(a) > 0.
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6.3 Irreducibility, Atoms, and Small Sets

53.1 Irreducibility

ucibility is a first measure of the sensitivity of the Markov
w. It is crucial in the setup of Markov chain
Monte Carlo algorithms, because it leads to a guarantee of convergence, thus
swoiding 2 detailed study of the transition operator, which would otherwise

% necessary to specify “acceptable” initial conditions.
In the discrete case, the chain is irreducible if all states communicate,

The property of irred
ehain to the initial conditions, To OF

samely if
Py(my <0) >0, Vz,y € X,

6.7). In many cases, Py(Ty < )

=, being the first time y is visited, defined in (
an auxiliary measure

4 uniformly equal to zero, and it is necessary to introduce
& on B(X) to correctly define the notion of irreducibility-

Definition 6.13. Civen a measure ¢, the Markov chain (Xn) with transition
el K(z,y) is p-irreducible if, for every A € B(X) with @(A) > 0, there
exists n such that K™ (z, A) > 0 for all z € X (equivalently, Py(Ta < 00) > 0).
The chain is strongly (,o—irreducible if n =1 for all measurable A.

Example 6.14. (Continuation of Example 6.3) In the case of the
Bernoulli-Laplace model, the (finite) chain is indeed irreducible since it is
pussible to connect the states and y in |z — y| steps with probability

1=TA\Y

jons of irreducibility. The

The following result provides equivalent definit
(6.9) and the Chapman-—

peoof is left to Problem 6.13, and follows from
Solmogorov equations.
Theorem 6.15. The chain (Xn) s p-irreducible
wnd every A € B(X) such that p(A) > 0, one of t
%) there exists n € N* such that K™(z, A) > 0;
D ) E. [n4] > 0;
) K.(z,A) > 0 for an 0 < €< 1:

The introduction of the K.-chain then allows for the creation of a strictly
positive kernel in the case of a -irreducible chain and this property is used

= the following to simplify the proofs. Moreover, the measure ¢ in Definition
%.13 plays no cru y is an intrinsic property

if and only if for every T € X
he following properties holds:

cial role in the sense that irreducibilit

of (X,,) and does not rely on .

The following theorem details the properties of the mazimal irreducibility

measure V.
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Definition 6.10. Consider A € B(X). The first n for which the chain enters
the set A is denoted by

(6.7) ra=inf{n>1Xn € A}

and is called the stopping time at A with, by convention, T4 = +ooif Xn €A
for every n. More generally, a function @1, Bas-+0) 18 called a stopping rule
if the set {¢ = n} is measurable for the o-algebra induced by (Xo, - - - »Xn)-
Associated with the set A, we also define

(6-8) na =Y la(Xn),
n=1

the number of passages of (X,) in A.

Of particular importance are the related quantities Eq[n4] and Pe (TA S
00), which are the average number of passages in A and the probability of
return to A in a finite number of steps.

We will be mostly concerned with stopping rules of the form given in (6.7)
which express the fact that 74 takes the value n when none of the values of
Xo. Xip oA, ote in the given state (or set) A, but the nth value is.
The strong Markov property corresponds to the following result, whose proof
follows from the weak Markov property and conditioning on {¢ = n}:

Proposition 6.11. Strong Markov property For every initial distribution
p and every stopping time which is almost surely finite,

E#[h(XC+11 XC+2’ % & )‘xh ER) .'Ilc] = ]Emc [h(Xla Xgy-- )] )
provided the exzpectations eTist.

We can thus condition on a random number of instants while keeping the
fundamental properties of a Markov chain.

Example 6.12. Coin tossing. In a coin tossing game, player b has a gain
of +1 if a head appears and player ¢ has a gain of +1 if a tail appears (so
player b has a “gain” of —1 (a loss) if a tail appears). If Xn is the sum of
the gains of player b after n rounds of this coin tossing game, the transition
matrix P is an infinite dimensional matrix with upper and lower subdiagonals
equal to 1/2. Assume that player b has B dollars and player ¢ has C dollars,
and consider the following return times:

n =inf{n; X, =0}, ™= inf{n; Xn < —B}, ™= inf{n; X» > C},

which represent respectively the return to null and the ruins of the first and
second players, that is to say, the first times the fortunes of both players,
respectively B and O, are spent. The probability of ruin (bankruptcy) for
the first player is then Po (T > 73). (Feller 1970, Chapter IIL, has a detailed
analysis of this coin tossing game.) Il
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Lemma 6.7. Chapman—Kolmogorov equations For every (m,n) € N2,
s X, AcB(X),

K™t (z,A) = / K™(y,A) K™ (z,dy) -
x

{In a very informal sense, the Chapman-Kolmogorov equations state that
%o get from z to A in m + n steps, you must pass through some y on the nth

wep.) In the discrete case, Lemma 6.7 is simply interpreted as a matrix prod-
= and follows directly from (6.2). In the general case, we need to consider
& s an operator on the space of integrable functions; that is, we define

Kh(z) = / b ) o e B

1 being the dominating measure of the model. K™ is then the nth composition
£ P_namely K" = Ko e

Definition 6.8. A resolvant associated with the kernel P is a kernel of the
form

o
Koz, A)=(1-¢) ) eK'(z,4), 0<e< 2
i=0
4=d the chain with kernel K¢ is a K.-chain.

Given an initial distribution u, we can associate with the kernel K. a chain
| X:) which formally corresponds to a subchain of the original chain £X6.)s
here the indices in the subchain are generated from a geometric distribution
with parameter 1 — €. Thus, K. is indeed a kernel, and we will see that the
sesulting Markov chain (X¢) enjoys much stronger regularity. This will be
—=ed later to establish many properties of the original chain.

If E,[ -] denotes the expectation associated with the distribution P, the
{weak) Markov property can be written as the following result, which just
sephrases the limited memory properties of a Markov chain:

Proposition 6.9. Weak Markov property For every initial distribution
» and every (n + 1) sample (Xo, - - - A

(6.6) E“[h(xn+1, Xn+2, . .)l.’l!(), o Wiy :'Cn] = ]E:,," [h(Xl, Xz, .o )],
provided that the expectations exist.

Note that if h is the indicator function, then this definition is exactly the
<ame as Definition 6.4. However, (6.6) can be generalized to other classes of
Zmctions—hence the terminology “weak”— and it becomes particularly useful
with the notion of stopping time in the convergence assessment of Markov
chain Monte Carlo algorithms in Chapter 12.
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oL Y  with probability exp{(E(Y)— E(X»))/T}A1
e X, otherwise.

If the temperature T’ depends on n, the chain is time heterogeneous. :

Example 6.6. AR(1) Models. AR(1) models provide a simple illustratios
of Markov chains on continuous state-space. If

Xn=9Xn—1 +€n, GER,

with &, ~ N(0,02), and if the &,,s are independent, X, is indeed independent
from Xp—2, Xn_3, - - - conditionally on X,,—1. The Markovian properties of an
AR(q) process can be derived by considering the vector (X, ..., Xn—q+1). OB
the other hand, ARMA (p, g) models do not fit in the Markovian framework

(see Problem 6.3). It

In the general case, the fact that the kernel K determines the properties
of the chain (X,) can be inferred from the relations

!

P:z:(Xl = Al) = K(:E’Al) 3
Pa:((XlaX2) € Al X A2) = K(y11A2) K(x7dy1)

... Al
PZ((Xl,...,Xn)€A1><"'XAn) = / / K(yn—l,An)
A An-1
x K(z,dy1) -+ K(yn—2,dYn-1) -

In particular, the relation Pr(X1 € A1) = K (z,A;) indicates that K(zn.
dx,+1) is a version of the conditional distribution of X1 given X,. How-
ever, as we have defined a Markov chain by first specifying this kernel, we do
not need to be concerned with different versions of the conditional probabil-
ities. This is why we noted that constructing the Markov chain through the
transition kernel was mathematically “cleaner.” (Moreover, in the following
chapters, we will see that the objects of interest are often these conditional
distributions, and it is important that we need not worry about different ver-
sions. Nonetheless, the properties of a Markov chain considered in this chapter
are independent of the version of the conditional probability chosen.)

If we denote K(z, A) = K(z, A), the kernel for n transitions is given by

(n>1)
(6.5) K@ A)= [ K0 ) Ko dy)

The following result provides convolution formulas of the type K™ = K™%
K™, which are called Chapman—Kolmogorov equations.
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sminial distribution p = (w1, w2, - - .), the marginal probability distribution of
X; s obtained from the matrix multiplication

-2 pr = pK

smd_ by repeated multiplication, Xn ~ Hn = K™ Similarly, in the continuous
wase_ if p denotes the initial distribution of the chain, namely if

Xo~Hs

-3
Shen we let P, denote the probability distribution of (Xn) under condition
% 3). When Xo is fixed, in particular for p equal to the Dirac mass 0z, W€

e the alternative notation Pgo-
a sequence Xo, X151 Xny- -

Definition 6.4. Given a transition kernel K,
4 random variables is a Markov chain, Jenoted by (Xn), if, for any t, th
somditional distribution of Xt given Ty—1,Tt—2- - zo is the same as the dis-

ssbution of Xi given T¢—1; that is,
— P(Xk+1 € Alzr)

= /AK(:Ek,da:) A

P(Xk+1 € Alzo, 1, D25 - - 1 Tk)

%4

The chain is time homogeneous, Or simply homogeneous, if the distribution
X - , Xt,) given Tio is the same as the distribution of (Xt,—tu,th-tm
X, ) given To for every k and every (k+ 1)-uplet to < ty < oo St

So. in the case of a Markov chain, if the initial distribution or the initial
e is known, the construction of the Markov chain (Xn) is entirely deter-
mimed by its transition, namely by the distribution of X,, conditionally on

1
The study of Markov chains is almost always restricted to the time-
t this designation in the following. It is, however,
ion of Markov chain

Lomogeneous case and we omi

@mportant to note here that an incorrect implementat

Monte Carlo algorithms can easily produce nonhomogeneous Markov chains
%or which the standard convergence properties do not apply. (See also the case
¢ +he ARMS algorithm in Section 7.4.2.)

6.5. Simulated Annealing. The simulated annealing algorithm
en implemented in a nonhomogeneous form
and studied in time-homogeneous form. Given a finite state-space with size
2 = {1,2,...,K}, an energy function E(-), and a temperature T', the
<mulated annealing Markov chain Xo, Ky 18 represented by the following
~-ansition operator: Conditionally on Xn, Y is generated from a fixed proba-
sality distribution (1o n ™ x) on 2 and the new value of the chain is given

by

Example
' e Section 5.2.3 for details) is oft
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Thus, if the marginals are proper, for convergence we only need our chain @
be aperiodic. This is easy to satisfy; a sufficient condition is that K(zn,-) >0
(or, equivalently, f(-[zn) > 0) in a neighborhood of 2. If the marginals are
not proper, or if they do not exist, then the chain is not positive recurrent. k
is either null recurrent or transient, and both cases are bad.

6.2 Basic Notions

A Markov chain is a sequence of random variables that can be thought of as
evolving over time, with probability of a transition depending on the particulas
set in which the chain is. It therefore seems natural and, in fact, is mathemat-
ically somewhat cleaner to define the chain in terms of its transition kernel
the function that determines these transitions.

Definition 6.2. A transition kernel is a function K defined on X x B(X) such
that

(i) Vz € X, K(z,-) is a probability measure;
(i) VA € B(X), K(,A) is measurable.

When X is discrete, the transition kernel simply is a (transition) matrix
K with elements

Py = P(Xn = Y| Xnir=1), z,y € X.

In the continuous case, the kernel also denotes the conditional density K (z,z")
of the transition K (z,-); that is, P(X € Alz) = [ K(z,2')da’.

Example 6.3. Bernoulli-Laplace Model. Consider X = {0,1,...,M}
and a chain (X,,) such that X, represents the state, at time n, of a tank which
contains exactly M particles and is connected to another identical tank. Two
types of particles are introduced in the system, and there are M of each type-
If X,, denotes the number of particles of the first kind in the first tank at time
n and the moves are restricted to a single exchange of particles between the
two tanks at each instant, the transition matrix is given by (for 0 < z,y < M)
S n=01 g9

z(M — z) 2\ M-z’
P =2 20 P = (37) ’Pﬂ“”:( M )

and Py1 = Pym-1) = 1. (This model is the Bernoulli-Laplace model; see
Feller 1970, Chapter XV.) II

The chain (X,) is usually defined for n € N rather than for n € Z. There-
fore, the distribution of Xo, the initial state of the chain, plays an important
role. In the discrete case, where the kernel K is a transition matrix, given an
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Desnition 6.13 as the existence of n € N such that P(X, € A|Xo) > 0 for
ewery A such that 7(A) > 0.) This property also ensures that most of the
whsins involved in MCMC algorithms are recurrent (that is, that the average
smmber of visits to an arbitrary set A is infinite (Definition 6.29)), or even
S.rris recurrent (that is, such that the probability of an infinite number of
sesurns to A is 1 (Definition 6.32)). Harris recurrence ensures that the chain
%= the same limiting behavior for every starting value instead of almost every
ssarting value. (Therefore, this is the Markov chain equivalent of the notion
o continuity for functions.)

This latter point is quite important in the context of MCMC algorithms.
Simce most algorithms are started from some arbitrary point zo, we are in
+=ect starting the algorithm from a set of measure zero (under a continuous
Aeminating measure). Thus, insuring that the chain converges for almost every
ssarting point is not enough, and we need Harris recurrence to guarantee
somvergence from every starting point.

The stationary distribution is also a limiting distribution in the sense that
“he limiting distribution of Xn41 is  under the total variation norm (see
Proposition 6.48), notwithstanding the initial value of Xo. Stronger forms
of convergence are also encountered in MCMC settings, like geometric and
wmiform convergences (see Definitions 6.54 and 6.58). In a simulation setup, a
st interesting consequence of this convergence property is that the average

1 N
R, 5
1) N;h(xn)

semverges to the expectation Erx [A(X)] almost surely. When the chain is re-
sersible (Definition 6.44) (that is, when the transition kernel is symmetric), a
eniral Limit Theorem also holds for this average.

In Chapter 12, diagnostics will be based on a minorization condition; that
= the existence of a set C such that there also exists m € N, €, > 0, and a
peobability measure vm such that

P(Xm € A|Xo) 2 €mVm(4)

shen X, € C. The set C is then called a small set (Definition 6.19) and
asit< of the chain to this set can be exploited to create independent batches
= the sum (6.1), since, with probability €mn, the next value of the m-skeleton
Markov chain (Xmn)n 18 generated from the minorizing measure Vm, yhich is
sdependent of Xo. ¢
== Tinal essential, it is sometimes helpful to associate the probabilistic
lamsuage of Markov chains with the statistical language of data analysis.

Statistics Markov Chain
marginal distribution < invariant distribution
proper marginals & positive recurrent
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called Markov processes) since the very nature of simulation leads! us ==
consider only discrete-time stochastic processes, (X, )nen. Indeed, Hastings
(1970) notes that the use of pseudo-random generators and the representation
of numbers in a computer imply that the Markov chains related with Markes
chain Monte Carlo methods are, in fact, finite state-space Markoy chains.
However, we also consider arbitrary staté-space Markov chains o3 2
continuous support distributions and to avoid addressing the problem of ap-
proximation of these distributions with discrete support distributions, sines
such an approximation depends on both material and algorithmic specifics
of a given technique (see Roberts et al. 1995, for a study of the influence of
discretization on the convergence of Markov chains associated with Markos
chain Monte Carlo algorithms).

6.1 Essentials for MCMC

For those familiar with the properties of Markov chains, this first sectiom
provides a brief survey of the properties of Markov chains that are contained
in the chapter and are essential for the study of MCMC methods. Starting with
Section 6.2, the theory of Markov chains is developed from first principles.
In the setup of MCMC algorithms, Markov chains are constructed from
a transition kernel K (Definition 6.2), a conditional probability density such

that X,,.; ~ K (Xn; Xny1). A typical example is provided by the randess
walk process, formally defined as follows.

Definition 6.1. A sequence of random variables (X,) is a random walk if &
satisfies

Xns1 =X, +é€n,

where €, is generated independently of X5, X, g TF thie distribution of
the €, is symmetric about zero, the sequence is called a symmetric random
walk.

There are many examples of random walks (see Examples 6.39, 6.40, and
6.73), and random walks play a key role in many MCMC algorithms, partic-
ularly those based on the Metropolis-Hastings algorithm (see Chapter 7).

The chains encountered in MCMC settings enjoy a very strong stability
property, namely a stationary probability distribution exists by constructios
(Definition 6.35); that is, a distribution 7 such that if Xp ~, then X, 1 ~ 7.
if the kernel K allows for free moves all over the state space. (This freedom
is called trreducibility in the theory of Markov chains and is formalized =

! Some Markov chain Monte Carlo algorithms still employ a diffusion representatio=
to speed up convergence to the stationary distribution (see, for instance, Section
7.8.5, Roberts and Tweedie 1995, or Phillips and Smith 1996).
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Leaphorn never counted on luck. Instead, he expected order—the natural
sequence of behavior, the cause producing the natural effect, the human
behaving in the way it was natural for him to behave. He counted on that
and on his own ability to sort out the chaos of observed facts and find in
them this natural order.

—Tony Hillerman, The Blessing Way

I this chapter we introduce fundamental notions of Markov chains and state
the results that are needed to establish the convergence of various MCMC
slzorithms and, more generally, to understand the literature on this topic.
Thus, this chapter, along with basic notions of probability theory, will pro-
wide enough foundation for the understanding of the following chapters. It
== unfortunately, a necessarily brief and, therefore, incomplete introduction
2o Markov chains, and we refer the reader to Meyn and Tweedie (1993), on
which this chapter is based, for a thorough introduction to Markov chains.
Other perspectives can be found in Doob (1953), Chung (1960), Feller (1970,
1971), and Billingsley (1995) for general treatments, and Norris (1997), Num-
melin (1984), Revuz (1984), and Resnick (1994) for books entirely dedicated
2o Markov chains. Given the purely utilitarian goal of this chapter, its style
and presentation differ from those of other chapters, especially with regard
2o the plethora of definitions and theorems and to the rarity of examples and
proofs. In order to make the book accessible to those who are more interested
= the implementation aspects of MCMC algorithms than in their theoretical
“sundations, we include a preliminary section that contains the essential facts
about Markov chains.

Before formally introducing the notion of a Markov chain, note that we
<o not deal in this chapter with Markov models in continuous time (also
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% 8.5 Covariance in Markov Chains

A= application of Chebychev’s inequality shows that the convergence of an average
o random variables from a Markov chain can be connected to the behavior of the
wwmariances, with a sufficient condition for convergence in probability being that the
ssmmriances go to zero.

We assume that the Markov chain is Harris positive and aperiodic, and is sta-
“wmary. We also assume that the random variables of the chain have finite variance.
Thes let (X,,) be a stationary ergodic Markov chain with mean 0 and finite variance.
The variance of the average of the X;’s is

52) var (—:;—Ol
(n+1)

) = Shrvar(Xo) + 2 i, heov(Xe, X

%o the covariance term in (6.52) will go to zero if Y ;_, cov(Xo, Xx)/n goes to zero,
s 2 sufficient condition for this is that cov(Xo, Xx) converges to 0 (Problem 6.38).
To see when cov(Xo, Xx) converges to 0, write
ICOV(Xo,Xk)| = IE[XQXk]l
= |E[XoE(Xk|Xo)]l
(653) < [E(X3)]"*{E[E(Xk| X0)]*}'/?,

where we used the Cauchy-Schwarz inequality. Since E(X?) = o2, cov(Xo, Xx) will
= 10 zero if E[E(Xk|Xo)]? goes to 0.

Example 6.84. (Continuation of Example 6.6) Consider the AR(1) model
16.54) X = 0X—q F epyi 1 Bi=0,0 0051

when the es are iid N(0,1), 6 is an unknown parameter satisfying |6| < 1, and
X, ~ N(0,0%). The X}’s all have marginal normal distributions with mean zero.
The variance of X satisfies var(Xx) = §%var(Xx—1) +1 and, var(Xx) = o? for all k,
seowided o2 = 1/(1 — 6%). This is the stationary case in which it can be shown that

16.35) ]E(Xleo) = GkXo
and. hence, E[E(Xx|X0)]? = 6?02, which goes to zero as long as |§] < 1. Thus,
war X ) converges to 0. (See Problem 6.68.) I
Returning to (6.53), let M be a positive constant and write
E[E(Xk|X0)]* = E[E(XkIx,>m|Xo) + E(XxLx, <nm|Xo)]?
(6.56) < 2E[E(Xxlx, >nm|Xo0)]? + 2E[E(Xilx, <m|X0)]*.

Examining the two terms on the right side of (6.56), the first term can be made
arbitrarily small using the fact that X has finite variance, while the second term
comverges to zero as a consequence of Theorem 6.51. We formalize this in the fol-
Jowing theorem.

Theorem 6.85. If the Markov chain (X,) is positive and aperiodic, with var(X,) <
2. then cov(Xo, Xx) converges to 0.




